# Ultralytics YOLO 🚀, AGPL-3.0 license """ Ultralytics modules. Visualize with: from ultralytics.nn.modules import * import torch import os x = torch.ones(1, 128, 40, 40) m = Conv(128, 128) f = f'{m._get_name()}.onnx' torch.onnx.export(m, x, f) os.system(f'onnxsim {f} {f} && open {f}') """ from .block import (C1, C2, C3, C3TR, DFL, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, GhostBottleneck, HGBlock, HGStem, Proto, RepC3) from .conv import (CBAM, ChannelAttention, Concat, Conv, Conv2, ConvTranspose, DWConv, DWConvTranspose2d, Focus, GhostConv, LightConv, RepConv, SpatialAttention) from .head import Classify, Detect, Pose, RTDETRDecoder, Segment from .transformer import (AIFI, MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer, LayerNorm2d, MLPBlock, MSDeformAttn, TransformerBlock, TransformerEncoderLayer, TransformerLayer) __all__ = [ 'Conv', 'Conv2', 'LightConv', 'RepConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv', 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'TransformerLayer', 'TransformerBlock', 'MLPBlock', 'LayerNorm2d', 'DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost', 'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'Detect', 'Segment', 'Pose', 'Classify', 'TransformerEncoderLayer', 'RepC3', 'RTDETRDecoder', 'AIFI', 'DeformableTransformerDecoder', 'DeformableTransformerDecoderLayer', 'MSDeformAttn', 'MLP']