import torch from ultralytics import YOLO def test_model_init(): model = YOLO.new("yolov8n.yaml") model.info() try: YOLO() except Exception: print("Successfully caught constructor assert!") raise Exception("constructor error didn't occur") def test_model_forward(): model = YOLO.new("yolov8n.yaml") img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512) model.forward(img) model(img) def test_model_info(): model = YOLO.new("yolov8n.yaml") model.info() model = model.load("best.pt") model.info(verbose=True) def test_model_fuse(): model = YOLO.new("yolov8n.yaml") model.fuse() model.load("best.pt") model.fuse() def test_visualize_preds(): model = YOLO.load("best.pt") model.predict(source="ultralytics/assets") def test_val(): model = YOLO.load("best.pt") model.val(data="coco128.yaml", imgsz=32) def test_model_resume(): model = YOLO.new("yolov8n.yaml") model.train(epochs=1, imgsz=32, data="coco128.yaml") try: model.resume(task="detect") except AssertionError: print("Successfully caught resume assert!") def test_model_train_pretrained(): model = YOLO.load("best.pt") model.train(data="coco128.yaml", epochs=1, imgsz=32) model = model.new("yolov8n.yaml") model.train(data="coco128.yaml", epochs=1, imgsz=32) img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512) model(img) def test_exports(): """ Format Argument Suffix CPU GPU 0 PyTorch - .pt True True 1 TorchScript torchscript .torchscript True True 2 ONNX onnx .onnx True True 3 OpenVINO openvino _openvino_model True False 4 TensorRT engine .engine False True 5 CoreML coreml .mlmodel True False 6 TensorFlow SavedModel saved_model _saved_model True True 7 TensorFlow GraphDef pb .pb True True 8 TensorFlow Lite tflite .tflite True False 9 TensorFlow Edge TPU edgetpu _edgetpu.tflite False False 10 TensorFlow.js tfjs _web_model False False 11 PaddlePaddle paddle _paddle_model True True """ from ultralytics import YOLO from ultralytics.yolo.engine.exporter import export_formats print(export_formats()) model = YOLO.new("yolov8n.yaml") model.export(format='torchscript') model.export(format='onnx') model.export(format='openvino') model.export(format='coreml') model.export(format='paddle') def test(): test_model_forward() test_model_info() test_model_fuse() test_visualize_preds() test_val() test_model_resume() test_model_train_pretrained() if __name__ == "__main__": test()