# Ultralytics YOLO 🚀, GPL-3.0 license import contextlib from copy import deepcopy import thop import torch import torch.nn as nn from ultralytics.nn.modules import (C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify, Concat, Conv, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Ensemble, Focus, GhostBottleneck, GhostConv, Segment) from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, yaml_load from ultralytics.yolo.utils.checks import check_requirements, check_yaml from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, initialize_weights, intersect_dicts, make_divisible, model_info, scale_img, time_sync) class BaseModel(nn.Module): """ The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family. """ def forward(self, x, profile=False, visualize=False): """ Forward pass of the model on a single scale. Wrapper for `_forward_once` method. Args: x (torch.Tensor): The input image tensor profile (bool): Whether to profile the model, defaults to False visualize (bool): Whether to return the intermediate feature maps, defaults to False Returns: (torch.Tensor): The output of the network. """ return self._forward_once(x, profile, visualize) def _forward_once(self, x, profile=False, visualize=False): """ Perform a forward pass through the network. Args: x (torch.Tensor): The input tensor to the model profile (bool): Print the computation time of each layer if True, defaults to False. visualize (bool): Save the feature maps of the model if True, defaults to False Returns: (torch.Tensor): The last output of the model. """ y, dt = [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: LOGGER.info('visualize feature not yet supported') # TODO: feature_visualization(x, m.type, m.i, save_dir=visualize) return x def _profile_one_layer(self, m, x, dt): """ Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results to the provided list. Args: m (nn.Module): The layer to be profiled. x (torch.Tensor): The input data to the layer. dt (list): A list to store the computation time of the layer. Returns: None """ c = m == self.model[-1] # is final layer, copy input as inplace fix o = thop.profile(m, inputs=(x.clone() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs t = time_sync() for _ in range(10): m(x.clone() if c else x) dt.append((time_sync() - t) * 100) if m == self.model[0]: LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') if c: LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") def fuse(self): """ Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the computation efficiency. Returns: (nn.Module): The fused model is returned. """ if not self.is_fused(): for m in self.model.modules(): if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, 'bn') # remove batchnorm m.forward = m.forward_fuse # update forward self.info() return self def is_fused(self, thresh=10): """ Check if the model has less than a certain threshold of BatchNorm layers. Args: thresh (int, optional): The threshold number of BatchNorm layers. Default is 10. Returns: (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise. """ bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model def info(self, verbose=False, imgsz=640): """ Prints model information Args: verbose (bool): if True, prints out the model information. Defaults to False imgsz (int): the size of the image that the model will be trained on. Defaults to 640 """ model_info(self, verbose, imgsz) def _apply(self, fn): """ `_apply()` is a function that applies a function to all the tensors in the model that are not parameters or registered buffers Args: fn: the function to apply to the model Returns: A model that is a Detect() object. """ self = super()._apply(fn) m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): m.stride = fn(m.stride) m.anchors = fn(m.anchors) m.strides = fn(m.strides) return self def load(self, weights): """ This function loads the weights of the model from a file Args: weights (str): The weights to load into the model. """ # Force all tasks to implement this function raise NotImplementedError("This function needs to be implemented by derived classes!") class DetectionModel(BaseModel): # YOLOv8 detection model def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes super().__init__() self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg), append_filename=True) # cfg dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict self.inplace = self.yaml.get('inplace', True) # Build strides m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): s = 256 # 2x min stride m.inplace = self.inplace forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x) m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward self.stride = m.stride m.bias_init() # only run once # Init weights, biases initialize_weights(self) if verbose: self.info() LOGGER.info('') def forward(self, x, augment=False, profile=False, visualize=False): if augment: return self._forward_augment(x) # augmented inference, None return self._forward_once(x, profile, visualize) # single-scale inference, train def _forward_augment(self, x): img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = self._forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) y = self._clip_augmented(y) # clip augmented tails return torch.cat(y, -1), None # augmented inference, train @staticmethod def _descale_pred(p, flips, scale, img_size, dim=1): # de-scale predictions following augmented inference (inverse operation) p[:, :4] /= scale # de-scale x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim) if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr return torch.cat((x, y, wh, cls), dim) def _clip_augmented(self, y): # Clip YOLOv5 augmented inference tails nl = self.model[-1].nl # number of detection layers (P3-P5) g = sum(4 ** x for x in range(nl)) # grid points e = 1 # exclude layer count i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices y[0] = y[0][..., :-i] # large i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices y[-1] = y[-1][..., i:] # small return y def load(self, weights, verbose=True): csd = weights.float().state_dict() # checkpoint state_dict as FP32 csd = intersect_dicts(csd, self.state_dict()) # intersect self.load_state_dict(csd, strict=False) # load if verbose: LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights') class SegmentationModel(DetectionModel): # YOLOv8 segmentation model def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True): super().__init__(cfg, ch, nc, verbose) class ClassificationModel(BaseModel): # YOLOv8 classification model def __init__(self, cfg=None, model=None, ch=3, nc=1000, cutoff=10, verbose=True): # yaml, model, channels, number of classes, cutoff index, verbose flag super().__init__() self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose) def _from_detection_model(self, model, nc=1000, cutoff=10): # Create a YOLOv5 classification model from a YOLOv5 detection model from ultralytics.nn.autobackend import AutoBackend if isinstance(model, AutoBackend): model = model.model # unwrap DetectMultiBackend model.model = model.model[:cutoff] # backbone m = model.model[-1] # last layer ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module c = Classify(ch, nc) # Classify() c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type model.model[-1] = c # replace self.model = model.model self.stride = model.stride self.save = [] self.nc = nc def _from_yaml(self, cfg, ch, nc, verbose): self.yaml = cfg if isinstance(cfg, dict) else yaml_load(check_yaml(cfg), append_filename=True) # cfg dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch], verbose=verbose) # model, savelist self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict self.info() def load(self, weights): model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts csd = model.float().state_dict() csd = intersect_dicts(csd, self.state_dict()) # intersect self.load_state_dict(csd, strict=False) # load @staticmethod def reshape_outputs(model, nc): # Update a TorchVision classification model to class count 'n' if required name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module if isinstance(m, Classify): # YOLO Classify() head if m.linear.out_features != nc: m.linear = nn.Linear(m.linear.in_features, nc) elif isinstance(m, nn.Linear): # ResNet, EfficientNet if m.out_features != nc: setattr(model, name, nn.Linear(m.in_features, nc)) elif isinstance(m, nn.Sequential): types = [type(x) for x in m] if nn.Linear in types: i = types.index(nn.Linear) # nn.Linear index if m[i].out_features != nc: m[i] = nn.Linear(m[i].in_features, nc) elif nn.Conv2d in types: i = types.index(nn.Conv2d) # nn.Conv2d index if m[i].out_channels != nc: m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) # Functions ------------------------------------------------------------------------------------------------------------ def torch_safe_load(weight): """ This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, it catches the error, logs a warning message, and attempts to install the missing module via the check_requirements() function. After installation, the function again attempts to load the model using torch.load(). Args: weight (str): The file path of the PyTorch model. Returns: The loaded PyTorch model. """ from ultralytics.yolo.utils.downloads import attempt_download file = attempt_download(weight) # search online if missing locally try: return torch.load(file, map_location='cpu') # load except ModuleNotFoundError as e: if e.name == 'omegaconf': # e.name is missing module name LOGGER.warning(f"WARNING ⚠️ {weight} requires {e.name}, which is not in ultralytics requirements." f"\nAutoInstall will run now for {e.name} but this feature will be removed in the future." f"\nRecommend fixes are to train a new model using updated ultraltyics package or to " f"download updated models from https://github.com/ultralytics/assets/releases/tag/v0.0.0") check_requirements(e.name) # install missing module return torch.load(file, map_location='cpu') # load def attempt_load_weights(weights, device=None, inplace=True, fuse=False): # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt = torch_safe_load(w) # load ckpt args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} # combine model and default args, preferring model args ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model # Model compatibility updates ckpt.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model ckpt.pt_path = weights # attach *.pt file path to model if not hasattr(ckpt, 'stride'): ckpt.stride = torch.tensor([32.]) # Append model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode # Module compatibility updates for m in model.modules(): t = type(m) if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment): m.inplace = inplace # torch 1.7.0 compatibility elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model if len(model) == 1: return model[-1] # Return ensemble print(f'Ensemble created with {weights}\n') for k in 'names', 'nc', 'yaml': setattr(model, k, getattr(model[0], k)) model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}' return model def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False): # Loads a single model weights ckpt = torch_safe_load(weight) # load ckpt args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} # combine model and default args, preferring model args model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model # Model compatibility updates model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model model.pt_path = weight # attach *.pt file path to model if not hasattr(model, 'stride'): model.stride = torch.tensor([32.]) model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode # Module compatibility updates for m in model.modules(): t = type(m) if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment): m.inplace = inplace # torch 1.7.0 compatibility elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model and ckpt return model, ckpt def parse_model(d, ch, verbose=True): # model_dict, input_channels(3) # Parse a YOLO model.yaml dictionary if verbose: LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}") nc, gd, gw, act = d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation') if act: Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() if verbose: LOGGER.info(f"{colorstr('activation:')} {act}") # print layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): with contextlib.suppress(NameError): args[j] = eval(a) if isinstance(a, str) else a # eval strings n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain if m in { Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}: c1, c2 = ch[f], args[0] if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output) c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in {BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x}: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[x] for x in f) elif m in {Detect, Segment}: args.append([ch[x] for x in f]) if m is Segment: args[2] = make_divisible(args[2] * gw, 8) else: c2 = ch[f] m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type m.np = sum(x.numel() for x in m_.parameters()) # number params m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type if verbose: LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save) def guess_model_task(model): """ Guess the task of a PyTorch model from its architecture or configuration. Args: model (nn.Module) or (dict): PyTorch model or model configuration in YAML format. Returns: str: Task of the model ('detect', 'segment', 'classify'). Raises: SyntaxError: If the task of the model could not be determined. """ cfg = None if isinstance(model, dict): cfg = model elif isinstance(model, nn.Module): # PyTorch model for x in 'model.args', 'model.model.args', 'model.model.model.args': with contextlib.suppress(Exception): return eval(x)['task'] for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml': with contextlib.suppress(Exception): cfg = eval(x) break # Guess from YAML dictionary if cfg: m = cfg["head"][-1][-2].lower() # output module name if m in ["classify", "classifier", "cls", "fc"]: return "classify" if m in ["detect"]: return "detect" if m in ["segment"]: return "segment" # Guess from PyTorch model if isinstance(model, nn.Module): for m in model.modules(): if isinstance(m, Detect): return "detect" elif isinstance(m, Segment): return "segment" elif isinstance(m, Classify): return "classify" # Unable to determine task from model raise SyntaxError("YOLO is unable to automatically guess model task. Explicitly define task for your model, " "i.e. 'task=detect', 'task=segment' or 'task=classify'.")