# Ultralytics YOLO 🚀, AGPL-3.0 license """ # RT-DETR model interface """ from pathlib import Path from ultralytics.nn.tasks import DetectionModel, attempt_load_one_weight, yaml_model_load from ultralytics.yolo.cfg import get_cfg from ultralytics.yolo.engine.exporter import Exporter from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT from ultralytics.yolo.utils.checks import check_imgsz from ultralytics.yolo.utils.torch_utils import model_info from ...yolo.utils.torch_utils import smart_inference_mode from .predict import RTDETRPredictor from .val import RTDETRValidator class RTDETR: def __init__(self, model='rtdetr-l.pt') -> None: if model and not model.endswith('.pt') and not model.endswith('.yaml'): raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.') # Load or create new YOLO model self.predictor = None suffix = Path(model).suffix if suffix == '.yaml': self._new(model) else: self._load(model) def _new(self, cfg: str, verbose=True): cfg_dict = yaml_model_load(cfg) self.cfg = cfg self.task = 'detect' self.model = DetectionModel(cfg_dict, verbose=verbose) # build model # Below added to allow export from yamls self.model.args = DEFAULT_CFG_DICT # attach args to model self.model.task = self.task @smart_inference_mode() def _load(self, weights: str): self.model, _ = attempt_load_one_weight(weights) self.model.args = DEFAULT_CFG_DICT # attach args to model self.task = self.model.args['task'] @smart_inference_mode() def predict(self, source, stream=False, **kwargs): """ Perform prediction using the YOLO model. Args: source (str | int | PIL | np.ndarray): The source of the image to make predictions on. Accepts all source types accepted by the YOLO model. stream (bool): Whether to stream the predictions or not. Defaults to False. **kwargs : Additional keyword arguments passed to the predictor. Check the 'configuration' section in the documentation for all available options. Returns: (List[ultralytics.yolo.engine.results.Results]): The prediction results. """ overrides = dict(conf=0.25, task='detect', mode='predict') overrides.update(kwargs) # prefer kwargs if not self.predictor: self.predictor = RTDETRPredictor(overrides=overrides) self.predictor.setup_model(model=self.model) else: # only update args if predictor is already setup self.predictor.args = get_cfg(self.predictor.args, overrides) return self.predictor(source, stream=stream) def train(self, **kwargs): """Function trains models but raises an error as RTDETR models do not support training.""" raise NotImplementedError("RTDETR models don't support training") def val(self, **kwargs): """Run validation given dataset.""" overrides = dict(task='detect', mode='val') overrides.update(kwargs) # prefer kwargs args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) args.imgsz = check_imgsz(args.imgsz, max_dim=1) validator = RTDETRValidator(args=args) validator(model=self.model) self.metrics = validator.metrics return validator.metrics def info(self, verbose=True): """Get model info""" return model_info(self.model, verbose=verbose) @smart_inference_mode() def export(self, **kwargs): """ Export model. Args: **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs """ overrides = dict(task='detect') overrides.update(kwargs) overrides['mode'] = 'export' args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) args.task = self.task if args.imgsz == DEFAULT_CFG.imgsz: args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed if args.batch == DEFAULT_CFG.batch: args.batch = 1 # default to 1 if not modified return Exporter(overrides=args)(model=self.model)