import contextlib import inspect import logging.config import os import platform import sys import tempfile import threading from pathlib import Path import cv2 import pandas as pd import yaml # Constants FILE = Path(__file__).resolve() ROOT = FILE.parents[2] # YOLO DEFAULT_CONFIG = ROOT / "yolo/configs/default.yaml" RANK = int(os.getenv('RANK', -1)) DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode TQDM_BAR_FORMAT = '{l_bar}{bar:10}{r_bar}' # tqdm bar format LOGGING_NAME = 'yolov5' HELP_MSG = \ """ Usage examples for running YOLOv8: 1. Install the ultralytics package: pip install ultralytics 2. Use the Python SDK: from ultralytics import YOLO model = YOLO('yolov8n.yaml') # build a new model from scratch model = YOLO('yolov8n.pt') # load a pretrained model (recommended for best training results) results = model.train(data='coco128.yaml') # train the model results = model.val() # evaluate model performance on the validation set results = model.predict(source='bus.jpg') # predict on an image success = model.export(format='onnx') # export the model to ONNX format 3. Use the command line interface (CLI): yolo task=detect mode=train model=yolov8n.yaml args... classify predict yolov8n-cls.yaml args... segment val yolov8n-seg.yaml args... export yolov8n.pt format=onnx args... Docs: https://docs.ultralytics.com Community: https://community.ultralytics.com GitHub: https://github.com/ultralytics/ultralytics """ # Settings # torch.set_printoptions(linewidth=320, precision=5, profile='long') # np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 pd.options.display.max_columns = 10 cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads def is_colab(): """ Check if the current script is running inside a Google Colab notebook. Returns: bool: True if running inside a Colab notebook, False otherwise. """ # Check if the google.colab module is present in sys.modules return 'google.colab' in sys.modules def is_kaggle(): """ Check if the current script is running inside a Kaggle kernel. Returns: bool: True if running inside a Kaggle kernel, False otherwise. """ return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' def is_jupyter_notebook(): """ Check if the current script is running inside a Jupyter Notebook. Verified on Colab, Jupyterlab, Kaggle, Paperspace. Returns: bool: True if running inside a Jupyter Notebook, False otherwise. """ # Check if the get_ipython function exists # (it does not exist when running as a standalone script) try: from IPython import get_ipython return get_ipython() is not None except ImportError: return False def is_docker() -> bool: """ Determine if the script is running inside a Docker container. Returns: bool: True if the script is running inside a Docker container, False otherwise. """ with open('/proc/self/cgroup') as f: return 'docker' in f.read() def is_dir_writeable(dir_path: str) -> bool: """ Check if a directory is writeable. Args: dir_path (str): The path to the directory. Returns: bool: True if the directory is writeable, False otherwise. """ try: with tempfile.TemporaryFile(dir=dir_path): pass return True except OSError: return False def get_default_args(func): # Get func() default arguments signature = inspect.signature(func) return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} def get_user_config_dir(sub_dir='Ultralytics'): """ Get the user config directory. Args: sub_dir (str): The name of the subdirectory to create. Returns: Path: The path to the user config directory. """ # Get the operating system name os_name = platform.system() # Return the appropriate config directory for each operating system if os_name == 'Windows': path = Path.home() / 'AppData' / 'Roaming' / sub_dir elif os_name == 'Darwin': # macOS path = Path.home() / 'Library' / 'Application Support' / sub_dir elif os_name == 'Linux': path = Path.home() / '.config' / sub_dir else: raise ValueError(f'Unsupported operating system: {os_name}') # GCP and AWS lambda fix, only /tmp is writeable if not is_dir_writeable(path.parent): path = Path('/tmp') / sub_dir # Create the subdirectory if it does not exist path.mkdir(parents=True, exist_ok=True) return path USER_CONFIG_DIR = get_user_config_dir() # Ultralytics settings dir def emojis(str=''): # Return platform-dependent emoji-safe version of string return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str def colorstr(*input): # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') *args, string = input if len(input) > 1 else ("blue", "bold", input[0]) # color arguments, string colors = { "black": "\033[30m", # basic colors "red": "\033[31m", "green": "\033[32m", "yellow": "\033[33m", "blue": "\033[34m", "magenta": "\033[35m", "cyan": "\033[36m", "white": "\033[37m", "bright_black": "\033[90m", # bright colors "bright_red": "\033[91m", "bright_green": "\033[92m", "bright_yellow": "\033[93m", "bright_blue": "\033[94m", "bright_magenta": "\033[95m", "bright_cyan": "\033[96m", "bright_white": "\033[97m", "end": "\033[0m", # misc "bold": "\033[1m", "underline": "\033[4m",} return "".join(colors[x] for x in args) + f"{string}" + colors["end"] def set_logging(name=LOGGING_NAME, verbose=True): # sets up logging for the given name rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR logging.config.dictConfig({ "version": 1, "disable_existing_loggers": False, "formatters": { name: { "format": "%(message)s"}}, "handlers": { name: { "class": "logging.StreamHandler", "formatter": name, "level": level,}}, "loggers": { name: { "level": level, "handlers": [name], "propagate": False,}}}) class TryExcept(contextlib.ContextDecorator): # YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager def __init__(self, msg=''): self.msg = msg def __enter__(self): pass def __exit__(self, exc_type, value, traceback): if value: print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}")) return True def threaded(func): # Multi-threads a target function and returns thread. Usage: @threaded decorator def wrapper(*args, **kwargs): thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) thread.start() return thread return wrapper def yaml_save(file='data.yaml', data=None): """ Save YAML data to a file. Args: file (str, optional): File name. Default is 'data.yaml'. data (dict, optional): Data to save in YAML format. Default is None. Returns: None: Data is saved to the specified file. """ file = Path(file) if not file.parent.exists(): # Create parent directories if they don't exist file.parent.mkdir(parents=True, exist_ok=True) with open(file, 'w') as f: # Dump data to file in YAML format, converting Path objects to strings yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False) def yaml_load(file='data.yaml'): """ Load YAML data from a file. Args: file (str, optional): File name. Default is 'data.yaml'. Returns: dict: YAML data and file name. """ with open(file, errors='ignore') as f: # Add YAML filename to dict and return return {**yaml.safe_load(f), 'yaml_file': file} def get_settings(file=USER_CONFIG_DIR / 'settings.yaml'): """ Function that loads a global settings YAML, or creates it and populates it with default values if it does not exist. If the datasets or weights directories are set to None, the current working directory will be used. The 'sync' setting determines whether analytics will be synced to help with YOLO development. """ from ultralytics.yolo.utils.torch_utils import torch_distributed_zero_first with torch_distributed_zero_first(RANK): if not file.exists(): settings = { 'datasets_dir': None, # default datasets directory. If None, current working directory is used. 'weights_dir': None, # default weights directory. If None, current working directory is used. 'sync': True} # sync analytics to help with YOLO development yaml_save(file, settings) return yaml_load(file) # Run below code on utils init ----------------------------------------------------------------------------------------- # Set logger set_logging(LOGGING_NAME) # run before defining LOGGER LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.) if platform.system() == 'Windows': for fn in LOGGER.info, LOGGER.warning: setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging # Check first-install steps SETTINGS = get_settings() def set_settings(kwargs, file=USER_CONFIG_DIR / 'settings.yaml'): """ Function that runs on a first-time ultralytics package installation to set up global settings and create necessary directories. """ SETTINGS.update(kwargs) yaml_save(file, SETTINGS)