# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.utils import ops __all__ = ['NASValidator'] class NASValidator(DetectionValidator): def postprocess(self, preds_in): """Apply Non-maximum suppression to prediction outputs.""" boxes = ops.xyxy2xywh(preds_in[0][0]) preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) return ops.non_max_suppression(preds, self.args.conf, self.args.iou, labels=self.lb, multi_label=False, agnostic=self.args.single_cls, max_det=self.args.max_det, max_time_img=0.5)