# Ultralytics YOLO 🚀, GPL-3.0 license from pathlib import Path from ultralytics import YOLO from ultralytics.yolo.utils import ROOT, SETTINGS MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n.pt' CFG = 'yolov8n.yaml' SOURCE = ROOT / 'assets/bus.jpg' def test_model_forward(): model = YOLO(CFG) model.predict(SOURCE) model(SOURCE) def test_model_info(): model = YOLO(CFG) model.info() model = YOLO(MODEL) model.info(verbose=True) def test_model_fuse(): model = YOLO(CFG) model.fuse() model = YOLO(MODEL) model.fuse() def test_predict_dir(): model = YOLO(MODEL) model.predict(source=ROOT / "assets", return_outputs=False) def test_val(): model = YOLO(MODEL) model.val(data="coco128.yaml", imgsz=32) def test_train_scratch(): model = YOLO(CFG) model.train(data="coco128.yaml", epochs=1, imgsz=32) model(SOURCE) def test_train_pretrained(): model = YOLO(MODEL) model.train(data="coco128.yaml", epochs=1, imgsz=32) model(SOURCE) def test_export_torchscript(): """ Format Argument Suffix CPU GPU 0 PyTorch - .pt True True 1 TorchScript torchscript .torchscript True True 2 ONNX onnx .onnx True True 3 OpenVINO openvino _openvino_model True False 4 TensorRT engine .engine False True 5 CoreML coreml .mlmodel True False 6 TensorFlow SavedModel saved_model _saved_model True True 7 TensorFlow GraphDef pb .pb True True 8 TensorFlow Lite tflite .tflite True False 9 TensorFlow Edge TPU edgetpu _edgetpu.tflite False False 10 TensorFlow.js tfjs _web_model False False 11 PaddlePaddle paddle _paddle_model True True """ from ultralytics.yolo.engine.exporter import export_formats print(export_formats()) model = YOLO(MODEL) model.export(format='torchscript') def test_export_onnx(): model = YOLO(MODEL) model.export(format='onnx') def test_export_openvino(): model = YOLO(MODEL) model.export(format='openvino') def test_export_coreml(): model = YOLO(MODEL) model.export(format='coreml') def test_export_paddle(): model = YOLO(MODEL) model.export(format='paddle') def test_all_model_yamls(): for m in list((ROOT / 'models').rglob('*.yaml')): YOLO(m.name)