# Ultralytics YOLO 🚀, GPL-3.0 license # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA) # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! -------- # Example usage: python train.py --data xView.yaml # parent # ├── yolov5 # └── datasets # └── xView ← downloads here (20.7 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/xView # dataset root dir train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images # Classes names: 0: Fixed-wing Aircraft 1: Small Aircraft 2: Cargo Plane 3: Helicopter 4: Passenger Vehicle 5: Small Car 6: Bus 7: Pickup Truck 8: Utility Truck 9: Truck 10: Cargo Truck 11: Truck w/Box 12: Truck Tractor 13: Trailer 14: Truck w/Flatbed 15: Truck w/Liquid 16: Crane Truck 17: Railway Vehicle 18: Passenger Car 19: Cargo Car 20: Flat Car 21: Tank car 22: Locomotive 23: Maritime Vessel 24: Motorboat 25: Sailboat 26: Tugboat 27: Barge 28: Fishing Vessel 29: Ferry 30: Yacht 31: Container Ship 32: Oil Tanker 33: Engineering Vehicle 34: Tower crane 35: Container Crane 36: Reach Stacker 37: Straddle Carrier 38: Mobile Crane 39: Dump Truck 40: Haul Truck 41: Scraper/Tractor 42: Front loader/Bulldozer 43: Excavator 44: Cement Mixer 45: Ground Grader 46: Hut/Tent 47: Shed 48: Building 49: Aircraft Hangar 50: Damaged Building 51: Facility 52: Construction Site 53: Vehicle Lot 54: Helipad 55: Storage Tank 56: Shipping container lot 57: Shipping Container 58: Pylon 59: Tower # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | import json import os from pathlib import Path import numpy as np from PIL import Image from tqdm import tqdm from utils.dataloaders import autosplit from utils.general import download, xyxy2xywhn def convert_labels(fname=Path('xView/xView_train.geojson')): # Convert xView geoJSON labels to YOLO format path = fname.parent with open(fname) as f: print(f'Loading {fname}...') data = json.load(f) # Make dirs labels = Path(path / 'labels' / 'train') os.system(f'rm -rf {labels}') labels.mkdir(parents=True, exist_ok=True) # xView classes 11-94 to 0-59 xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11, 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1, 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46, 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59] shapes = {} for feature in tqdm(data['features'], desc=f'Converting {fname}'): p = feature['properties'] if p['bounds_imcoords']: id = p['image_id'] file = path / 'train_images' / id if file.exists(): # 1395.tif missing try: box = np.array([int(num) for num in p['bounds_imcoords'].split(",")]) assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}' cls = p['type_id'] cls = xview_class2index[int(cls)] # xView class to 0-60 assert 59 >= cls >= 0, f'incorrect class index {cls}' # Write YOLO label if id not in shapes: shapes[id] = Image.open(file).size box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) with open((labels / id).with_suffix('.txt'), 'a') as f: f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt except Exception as e: print(f'WARNING: skipping one label for {file}: {e}') # Download manually from https://challenge.xviewdataset.org dir = Path(yaml['path']) # dataset root dir # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) # download(urls, dir=dir, delete=False) # Convert labels convert_labels(dir / 'xView_train.geojson') # Move images images = Path(dir / 'images') images.mkdir(parents=True, exist_ok=True) Path(dir / 'train_images').rename(dir / 'images' / 'train') Path(dir / 'val_images').rename(dir / 'images' / 'val') # Split autosplit(dir / 'images' / 'train')