import contextlib import hashlib import os import cv2 import numpy as np from PIL import ExifTags, Image, ImageOps from ..utils.general import segments2boxes HELP_URL = "See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data" IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm" # include image suffixes VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv" # include video suffixes BAR_FORMAT = "{l_bar}{bar:10}{r_bar}{bar:-10b}" # tqdm bar format LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv('RANK', -1)) PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true" # global pin_memory for dataloaders IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation # Get orientation exif tag for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation] == "Orientation": break def img2label_paths(img_paths): # Define label paths as a function of image paths sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}" # /images/, /labels/ substrings return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths] def get_hash(paths): # Returns a single hash value of a list of paths (files or dirs) size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes h = hashlib.md5(str(size).encode()) # hash sizes h.update("".join(paths).encode()) # hash paths return h.hexdigest() # return hash def exif_size(img): # Returns exif-corrected PIL size s = img.size # (width, height) with contextlib.suppress(Exception): rotation = dict(img._getexif().items())[orientation] if rotation in [6, 8]: # rotation 270 or 90 s = (s[1], s[0]) return s def verify_image_label(args): # Verify one image-label pair im_file, lb_file, prefix, keypoint = args nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", None, None # number (missing, found, empty, corrupt), message, segments, keypoints try: # verify images im = Image.open(im_file) im.verify() # PIL verify shape = exif_size(im) # image size shape = (shape[1], shape[0]) # hw assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}" if im.format.lower() in ("jpg", "jpeg"): with open(im_file, "rb") as f: f.seek(-2, 2) if f.read() != b"\xff\xd9": # corrupt JPEG ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved" # verify labels if os.path.isfile(lb_file): nf = 1 # label found with open(lb_file) as f: lb = [x.split() for x in f.read().strip().splitlines() if len(x)] if any(len(x) > 6 for x in lb) and (not keypoint): # is segment classes = np.array([x[0] for x in lb], dtype=np.float32) segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) lb = np.array(lb, dtype=np.float32) nl = len(lb) if nl: if keypoint: assert lb.shape[1] == 56, "labels require 56 columns each" assert (lb[:, 5::3] <= 1).all(), "non-normalized or out of bounds coordinate labels" assert (lb[:, 6::3] <= 1).all(), "non-normalized or out of bounds coordinate labels" kpts = np.zeros((lb.shape[0], 39)) for i in range(len(lb)): kpt = np.delete(lb[i, 5:], np.arange(2, lb.shape[1] - 5, 3)) # remove the occlusion paramater from the GT kpts[i] = np.hstack((lb[i, :5], kpt)) lb = kpts assert lb.shape[1] == 39, "labels require 39 columns each after removing occlusion paramater" else: assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected" assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}" assert (lb[:, 1:] <= 1).all(), f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}" _, i = np.unique(lb, axis=0, return_index=True) if len(i) < nl: # duplicate row check lb = lb[i] # remove duplicates if segments: segments = [segments[x] for x in i] msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed" else: ne = 1 # label empty lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) else: nm = 1 # label missing lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) if keypoint: keypoints = lb[:, 5:].reshape(-1, 17, 2) lb = lb[:, :5] return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg except Exception as e: nc = 1 msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}" return [None, None, None, None, None, nm, nf, ne, nc, msg] def polygon2mask(img_size, polygons, color=1, downsample_ratio=1): """ Args: img_size (tuple): The image size. polygons (np.ndarray): [N, M], N is the number of polygons, M is the number of points(Be divided by 2). """ mask = np.zeros(img_size, dtype=np.uint8) polygons = np.asarray(polygons) polygons = polygons.astype(np.int32) shape = polygons.shape polygons = polygons.reshape(shape[0], -1, 2) cv2.fillPoly(mask, polygons, color=color) nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio) # NOTE: fillPoly firstly then resize is trying the keep the same way # of loss calculation when mask-ratio=1. mask = cv2.resize(mask, (nw, nh)) return mask def polygons2masks(img_size, polygons, color, downsample_ratio=1): """ Args: img_size (tuple): The image size. polygons (list[np.ndarray]): each polygon is [N, M], N is the number of polygons, M is the number of points(Be divided by 2). """ masks = [] for si in range(len(polygons)): mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio) masks.append(mask) return np.array(masks) def polygons2masks_overlap(img_size, segments, downsample_ratio=1): """Return a (640, 640) overlap mask.""" masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio), dtype=np.int32 if len(segments) > 255 else np.uint8) areas = [] ms = [] for si in range(len(segments)): mask = polygon2mask( img_size, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1, ) ms.append(mask) areas.append(mask.sum()) areas = np.asarray(areas) index = np.argsort(-areas) ms = np.array(ms)[index] for i in range(len(segments)): mask = ms[i] * (i + 1) masks = masks + mask masks = np.clip(masks, a_min=0, a_max=i + 1) return masks, index