# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.engine.results import Results from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, ROOT, ops class PosePredictor(DetectionPredictor): def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): super().__init__(cfg, overrides, _callbacks) self.args.task = 'pose' def postprocess(self, preds, img, orig_imgs): """Return detection results for a given input image or list of images.""" preds = ops.non_max_suppression(preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, classes=self.args.classes, nc=len(self.model.names)) results = [] for i, pred in enumerate(preds): orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs shape = orig_img.shape pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:] pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape) path = self.batch[0] img_path = path[i] if isinstance(path, list) else path results.append( Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts)) return results def predict(cfg=DEFAULT_CFG, use_python=False): """Runs YOLO to predict objects in an image or video.""" model = cfg.model or 'yolov8n-pose.pt' source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ else 'https://ultralytics.com/images/bus.jpg' args = dict(model=model, source=source) if use_python: from ultralytics import YOLO YOLO(model)(**args) else: predictor = PosePredictor(overrides=args) predictor.predict_cli() if __name__ == '__main__': predict()