# Ultralytics YOLO 🚀, GPL-3.0 license import contextlib import math from pathlib import Path from urllib.error import URLError import cv2 import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch from PIL import Image, ImageDraw, ImageFont from ultralytics.yolo.utils import FONT, USER_CONFIG_DIR, threaded from .checks import check_font, check_requirements, is_ascii from .files import increment_path from .ops import clip_coords, scale_image, xywh2xyxy, xyxy2xywh class Colors: # Ultralytics color palette https://ultralytics.com/ def __init__(self): # hex = matplotlib.colors.TABLEAU_COLORS.values() hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') self.palette = [self.hex2rgb(f'#{c}') for c in hexs] self.n = len(self.palette) def __call__(self, i, bgr=False): c = self.palette[int(i) % self.n] return (c[2], c[1], c[0]) if bgr else c @staticmethod def hex2rgb(h): # rgb order (PIL) return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) colors = Colors() # create instance for 'from utils.plots import colors' class Annotator: # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic self.pil = pil or non_ascii if self.pil: # use PIL self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) self.draw = ImageDraw.Draw(self.im) self.font = check_pil_font(font='Arial.Unicode.ttf' if non_ascii else font, size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)) else: # use cv2 self.im = im self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): # Add one xyxy box to image with label if self.pil or not is_ascii(label): self.draw.rectangle(box, width=self.lw, outline=color) # box if label: w, h = self.font.getsize(label) # text width, height outside = box[1] - h >= 0 # label fits outside box self.draw.rectangle( (box[0], box[1] - h if outside else box[1], box[0] + w + 1, box[1] + 1 if outside else box[1] + h + 1), fill=color, ) # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) else: # cv2 p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) if label: tf = max(self.lw - 1, 1) # font thickness w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height outside = p1[1] - h >= 3 p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled cv2.putText(self.im, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA) def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False): """Plot masks at once. Args: masks (tensor): predicted masks on cuda, shape: [n, h, w] colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n] im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1] alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque """ if self.pil: # convert to numpy first self.im = np.asarray(self.im).copy() if len(masks) == 0: self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 colors = torch.tensor(colors, device=im_gpu.device, dtype=torch.float32) / 255.0 colors = colors[:, None, None] # shape(n,1,1,3) masks = masks.unsqueeze(3) # shape(n,h,w,1) masks_color = masks * (colors * alpha) # shape(n,h,w,3) inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1) mcs = (masks_color * inv_alph_masks).sum(0) * 2 # mask color summand shape(n,h,w,3) im_gpu = im_gpu.flip(dims=[0]) # flip channel im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3) im_gpu = im_gpu * inv_alph_masks[-1] + mcs im_mask = (im_gpu * 255) im_mask_np = im_mask.byte().cpu().numpy() self.im[:] = im_mask_np if retina_masks else scale_image(im_gpu.shape, im_mask_np, self.im.shape) if self.pil: # convert im back to PIL and update draw self.fromarray(self.im) def rectangle(self, xy, fill=None, outline=None, width=1): # Add rectangle to image (PIL-only) self.draw.rectangle(xy, fill, outline, width) def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'): # Add text to image (PIL-only) if anchor == 'bottom': # start y from font bottom w, h = self.font.getsize(text) # text width, height xy[1] += 1 - h self.draw.text(xy, text, fill=txt_color, font=self.font) def fromarray(self, im): # Update self.im from a numpy array self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) self.draw = ImageDraw.Draw(self.im) def result(self): # Return annotated image as array return np.asarray(self.im) def check_pil_font(font=FONT, size=10): # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary font = Path(font) font = font if font.exists() else (USER_CONFIG_DIR / font.name) try: return ImageFont.truetype(str(font) if font.exists() else font.name, size) except Exception: # download if missing try: check_font(font) return ImageFont.truetype(str(font), size) except TypeError: check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374 except URLError: # not online return ImageFont.load_default() def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True): # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop xyxy = torch.tensor(xyxy).view(-1, 4) b = xyxy2xywh(xyxy) # boxes if square: b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad xyxy = xywh2xyxy(b).long() clip_coords(xyxy, im.shape) crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] if save: file.parent.mkdir(parents=True, exist_ok=True) # make directory f = str(increment_path(file).with_suffix('.jpg')) # cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB return crop @threaded def plot_images(images, batch_idx, cls, bboxes, masks=np.zeros(0, dtype=np.uint8), paths=None, fname='images.jpg', names=None): # Plot image grid with labels if isinstance(images, torch.Tensor): images = images.cpu().float().numpy() if isinstance(cls, torch.Tensor): cls = cls.cpu().numpy() if isinstance(bboxes, torch.Tensor): bboxes = bboxes.cpu().numpy() if isinstance(masks, torch.Tensor): masks = masks.cpu().numpy().astype(int) if isinstance(batch_idx, torch.Tensor): batch_idx = batch_idx.cpu().numpy() max_size = 1920 # max image size max_subplots = 16 # max image subplots, i.e. 4x4 bs, _, h, w = images.shape # batch size, _, height, width bs = min(bs, max_subplots) # limit plot images ns = np.ceil(bs ** 0.5) # number of subplots (square) if np.max(images[0]) <= 1: images *= 255 # de-normalise (optional) # Build Image mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init for i, im in enumerate(images): if i == max_subplots: # if last batch has fewer images than we expect break x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin im = im.transpose(1, 2, 0) mosaic[y:y + h, x:x + w, :] = im # Resize (optional) scale = max_size / ns / max(h, w) if scale < 1: h = math.ceil(scale * h) w = math.ceil(scale * w) mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) # Annotate fs = int((h + w) * ns * 0.01) # font size annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) for i in range(i + 1): x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders if paths: annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames if len(cls) > 0: idx = batch_idx == i boxes = xywh2xyxy(bboxes[idx, :4]).T classes = cls[idx].astype('int') labels = bboxes.shape[1] == 4 # labels if no conf column conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred) if boxes.shape[1]: if boxes.max() <= 1.01: # if normalized with tolerance 0.01 boxes[[0, 2]] *= w # scale to pixels boxes[[1, 3]] *= h elif scale < 1: # absolute coords need scale if image scales boxes *= scale boxes[[0, 2]] += x boxes[[1, 3]] += y for j, box in enumerate(boxes.T.tolist()): c = classes[j] color = colors(c) c = names[c] if names else c if labels or conf[j] > 0.25: # 0.25 conf thresh label = f'{c}' if labels else f'{c} {conf[j]:.1f}' annotator.box_label(box, label, color=color) # Plot masks if len(masks): if masks.max() > 1.0: # mean that masks are overlap image_masks = masks[[i]] # (1, 640, 640) nl = idx.sum() index = np.arange(nl).reshape(nl, 1, 1) + 1 image_masks = np.repeat(image_masks, nl, axis=0) image_masks = np.where(image_masks == index, 1.0, 0.0) else: image_masks = masks[idx] im = np.asarray(annotator.im).copy() for j, box in enumerate(boxes.T.tolist()): if labels or conf[j] > 0.25: # 0.25 conf thresh color = colors(classes[j]) mh, mw = image_masks[j].shape if mh != h or mw != w: mask = image_masks[j].astype(np.uint8) mask = cv2.resize(mask, (w, h)) mask = mask.astype(bool) else: mask = image_masks[j].astype(bool) with contextlib.suppress(Exception): im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6 annotator.fromarray(im) annotator.im.save(fname) # save def plot_results(file='path/to/results.csv', dir='', segment=False): # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') save_dir = Path(file).parent if file else Path(dir) if segment: fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12] else: fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7] ax = ax.ravel() files = list(save_dir.glob('results*.csv')) assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' for f in files: try: data = pd.read_csv(f) s = [x.strip() for x in data.columns] x = data.values[:, 0] for i, j in enumerate(index): y = data.values[:, j].astype('float') # y[y == 0] = np.nan # don't show zero values ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) ax[i].set_title(s[j], fontsize=12) # if j in [8, 9, 10]: # share train and val loss y axes # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) except Exception as e: print(f'Warning: Plotting error for {f}: {e}') ax[1].legend() fig.savefig(save_dir / 'results.png', dpi=200) plt.close() def output_to_target(output, max_det=300): # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting targets = [] for i, o in enumerate(output): box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) j = torch.full((conf.shape[0], 1), i) targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) targets = torch.cat(targets, 0).numpy() return targets[:, 0], targets[:, 1], targets[:, 2:]