# Ultralytics YOLO 🚀, GPL-3.0 license from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params try: import comet_ml except (ModuleNotFoundError, ImportError): comet_ml = None def on_pretrain_routine_start(trainer): experiment = comet_ml.Experiment(project_name=trainer.args.project or "YOLOv8",) experiment.log_parameters(dict(trainer.args)) def on_train_epoch_end(trainer): experiment = comet_ml.get_global_experiment() experiment.log_metrics(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1) if trainer.epoch == 1: for f in trainer.save_dir.glob('train_batch*.jpg'): experiment.log_image(f, name=f.stem, step=trainer.epoch + 1) def on_fit_epoch_end(trainer): experiment = comet_ml.get_global_experiment() experiment.log_metrics(trainer.metrics, step=trainer.epoch + 1) if trainer.epoch == 0: model_info = { "model/parameters": get_num_params(trainer.model), "model/GFLOPs": round(get_flops(trainer.model), 3), "model/speed(ms)": round(trainer.validator.speed[1], 3)} experiment.log_metrics(model_info, step=trainer.epoch + 1) def on_train_end(trainer): experiment = comet_ml.get_global_experiment() experiment.log_model("YOLOv8", file_or_folder=trainer.best, file_name="best.pt", overwrite=True) callbacks = { "on_pretrain_routine_start": on_pretrain_routine_start, "on_train_epoch_end": on_train_epoch_end, "on_fit_epoch_end": on_fit_epoch_end, "on_train_end": on_train_end} if comet_ml else {}