# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # Parameters nc: 80 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple # YOLOv8.0s backbone backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 3, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C2f, [128, True]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C2f, [256, True]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 6, C2f, [512, True]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C2f, [1024, True]], [-1, 1, SPPF, [1024, 5]], # 9 ] # YOLOv8.0s head head: [[-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C2f, [512]], # 13 [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C2f, [256]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 12], 1, Concat, [1]], # cat head P4 [-1, 3, C2f, [512]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 9], 1, Concat, [1]], # cat head P5 [-1, 3, C2f, [1024]], # 23 (P5/32-large) [[15, 18, 21], 1, Detect, [nc]], # Detect(P3, P4, P5) ]