# Ultralytics YOLO 🚀, AGPL-3.0 license import json import shutil from collections import defaultdict from pathlib import Path import cv2 import numpy as np from tqdm import tqdm from ultralytics.utils.checks import check_requirements def coco91_to_coco80_class(): """Converts 91-index COCO class IDs to 80-index COCO class IDs. Returns: (list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the corresponding 91-index class ID. """ return [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None, None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, None, 73, 74, 75, 76, 77, 78, 79, None] def coco80_to_coco91_class(): # """ Converts 80-index (val2014) to 91-index (paper). For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/. Example: ```python import numpy as np a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet ``` """ return [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] def convert_coco(labels_dir='../coco/annotations/', use_segments=False, use_keypoints=False, cls91to80=True): """Converts COCO dataset annotations to a format suitable for training YOLOv5 models. Args: labels_dir (str, optional): Path to directory containing COCO dataset annotation files. use_segments (bool, optional): Whether to include segmentation masks in the output. use_keypoints (bool, optional): Whether to include keypoint annotations in the output. cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs. Example: ```python from ultralytics.data.converter import convert_coco convert_coco('../datasets/coco/annotations/', use_segments=True, use_keypoints=False, cls91to80=True) ``` Output: Generates output files in the specified output directory. """ # Create dataset directory save_dir = Path('yolo_labels') if save_dir.exists(): shutil.rmtree(save_dir) # delete dir for p in save_dir / 'labels', save_dir / 'images': p.mkdir(parents=True, exist_ok=True) # make dir # Convert classes coco80 = coco91_to_coco80_class() # Import json for json_file in sorted(Path(labels_dir).resolve().glob('*.json')): fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '') # folder name fn.mkdir(parents=True, exist_ok=True) with open(json_file) as f: data = json.load(f) # Create image dict images = {f'{x["id"]:d}': x for x in data['images']} # Create image-annotations dict imgToAnns = defaultdict(list) for ann in data['annotations']: imgToAnns[ann['image_id']].append(ann) # Write labels file for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations {json_file}'): img = images[f'{img_id:d}'] h, w, f = img['height'], img['width'], img['file_name'] bboxes = [] segments = [] keypoints = [] for ann in anns: if ann['iscrowd']: continue # The COCO box format is [top left x, top left y, width, height] box = np.array(ann['bbox'], dtype=np.float64) box[:2] += box[2:] / 2 # xy top-left corner to center box[[0, 2]] /= w # normalize x box[[1, 3]] /= h # normalize y if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0 continue cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1 # class box = [cls] + box.tolist() if box not in bboxes: bboxes.append(box) if use_segments and ann.get('segmentation') is not None: if len(ann['segmentation']) == 0: segments.append([]) continue if isinstance(ann['segmentation'], dict): ann['segmentation'] = rle2polygon(ann['segmentation']) if len(ann['segmentation']) > 1: s = merge_multi_segment(ann['segmentation']) s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist() else: s = [j for i in ann['segmentation'] for j in i] # all segments concatenated s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist() s = [cls] + s if s not in segments: segments.append(s) if use_keypoints and ann.get('keypoints') is not None: k = (np.array(ann['keypoints']).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist() k = box + k keypoints.append(k) # Write with open((fn / f).with_suffix('.txt'), 'a') as file: for i in range(len(bboxes)): if use_keypoints: line = *(keypoints[i]), # cls, box, keypoints else: line = *(segments[i] if use_segments and len(segments[i]) > 0 else bboxes[i]), # cls, box or segments file.write(('%g ' * len(line)).rstrip() % line + '\n') def convert_dota_to_yolo_obb(dota_root_path: str): """ Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format. The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory. Args: dota_root_path (str): The root directory path of the DOTA dataset. Example: ```python from ultralytics.data.converter import convert_dota_to_yolo_obb convert_dota_to_yolo_obb('path/to/DOTA') ``` Notes: The directory structure assumed for the DOTA dataset: - DOTA - images - train - val - labels - train_original - val_original After the function execution, the new labels will be saved in: - DOTA - labels - train - val """ dota_root_path = Path(dota_root_path) # Class names to indices mapping class_mapping = { 'plane': 0, 'ship': 1, 'storage-tank': 2, 'baseball-diamond': 3, 'tennis-court': 4, 'basketball-court': 5, 'ground-track-field': 6, 'harbor': 7, 'bridge': 8, 'large-vehicle': 9, 'small-vehicle': 10, 'helicopter': 11, 'roundabout': 12, 'soccer ball-field': 13, 'swimming-pool': 14, 'container-crane': 15, 'airport': 16, 'helipad': 17} def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir): orig_label_path = orig_label_dir / f'{image_name}.txt' save_path = save_dir / f'{image_name}.txt' with orig_label_path.open('r') as f, save_path.open('w') as g: lines = f.readlines() for line in lines: parts = line.strip().split() if len(parts) < 9: continue class_name = parts[8] class_idx = class_mapping[class_name] coords = [float(p) for p in parts[:8]] normalized_coords = [ coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8)] formatted_coords = ['{:.6g}'.format(coord) for coord in normalized_coords] g.write(f"{class_idx} {' '.join(formatted_coords)}\n") for phase in ['train', 'val']: image_dir = dota_root_path / 'images' / phase orig_label_dir = dota_root_path / 'labels' / f'{phase}_original' save_dir = dota_root_path / 'labels' / phase save_dir.mkdir(parents=True, exist_ok=True) image_paths = list(image_dir.iterdir()) for image_path in tqdm(image_paths, desc=f'Processing {phase} images'): if image_path.suffix != '.png': continue image_name_without_ext = image_path.stem img = cv2.imread(str(image_path)) h, w = img.shape[:2] convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir) def rle2polygon(segmentation): """ Convert Run-Length Encoding (RLE) mask to polygon coordinates. Args: segmentation (dict, list): RLE mask representation of the object segmentation. Returns: (list): A list of lists representing the polygon coordinates for each contour. Note: Requires the 'pycocotools' package to be installed. """ check_requirements('pycocotools') from pycocotools import mask m = mask.decode(segmentation) m[m > 0] = 255 contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS) polygons = [] for contour in contours: epsilon = 0.001 * cv2.arcLength(contour, True) contour_approx = cv2.approxPolyDP(contour, epsilon, True) polygon = contour_approx.flatten().tolist() polygons.append(polygon) return polygons def min_index(arr1, arr2): """ Find a pair of indexes with the shortest distance between two arrays of 2D points. Args: arr1 (np.array): A NumPy array of shape (N, 2) representing N 2D points. arr2 (np.array): A NumPy array of shape (M, 2) representing M 2D points. Returns: (tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively. """ dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) return np.unravel_index(np.argmin(dis, axis=None), dis.shape) def merge_multi_segment(segments): """ Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment. This function connects these coordinates with a thin line to merge all segments into one. Args: segments (List[List]): Original segmentations in COCO's JSON file. Each element is a list of coordinates, like [segmentation1, segmentation2,...]. Returns: s (List[np.ndarray]): A list of connected segments represented as NumPy arrays. """ s = [] segments = [np.array(i).reshape(-1, 2) for i in segments] idx_list = [[] for _ in range(len(segments))] # record the indexes with min distance between each segment for i in range(1, len(segments)): idx1, idx2 = min_index(segments[i - 1], segments[i]) idx_list[i - 1].append(idx1) idx_list[i].append(idx2) # use two round to connect all the segments for k in range(2): # forward connection if k == 0: for i, idx in enumerate(idx_list): # middle segments have two indexes # reverse the index of middle segments if len(idx) == 2 and idx[0] > idx[1]: idx = idx[::-1] segments[i] = segments[i][::-1, :] segments[i] = np.roll(segments[i], -idx[0], axis=0) segments[i] = np.concatenate([segments[i], segments[i][:1]]) # deal with the first segment and the last one if i in [0, len(idx_list) - 1]: s.append(segments[i]) else: idx = [0, idx[1] - idx[0]] s.append(segments[i][idx[0]:idx[1] + 1]) else: for i in range(len(idx_list) - 1, -1, -1): if i not in [0, len(idx_list) - 1]: idx = idx_list[i] nidx = abs(idx[1] - idx[0]) s.append(segments[i][nidx:]) return s