# Ultralytics YOLO 🚀, AGPL-3.0 license from copy import copy from ultralytics.models import yolo from ultralytics.nn.tasks import PoseModel from ultralytics.utils import DEFAULT_CFG from ultralytics.utils.plotting import plot_images, plot_results # BaseTrainer python usage class PoseTrainer(yolo.detect.DetectionTrainer): def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initialize a PoseTrainer object with specified configurations and overrides.""" if overrides is None: overrides = {} overrides['task'] = 'pose' super().__init__(cfg, overrides, _callbacks) def get_model(self, cfg=None, weights=None, verbose=True): """Get pose estimation model with specified configuration and weights.""" model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose) if weights: model.load(weights) return model def set_model_attributes(self): """Sets keypoints shape attribute of PoseModel.""" super().set_model_attributes() self.model.kpt_shape = self.data['kpt_shape'] def get_validator(self): """Returns an instance of the PoseValidator class for validation.""" self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss' return yolo.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) def plot_training_samples(self, batch, ni): """Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints.""" images = batch['img'] kpts = batch['keypoints'] cls = batch['cls'].squeeze(-1) bboxes = batch['bboxes'] paths = batch['im_file'] batch_idx = batch['batch_idx'] plot_images(images, batch_idx, cls, bboxes, kpts=kpts, paths=paths, fname=self.save_dir / f'train_batch{ni}.jpg', on_plot=self.on_plot) def plot_metrics(self): """Plots training/val metrics.""" plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png def train(cfg=DEFAULT_CFG, use_python=False): """Train the YOLO model on the given data and device.""" model = cfg.model or 'yolov8n-pose.yaml' data = cfg.data or 'coco8-pose.yaml' device = cfg.device if cfg.device is not None else '' args = dict(model=model, data=data, device=device) if use_python: from ultralytics import YOLO YOLO(model).train(**args) else: trainer = PoseTrainer(overrides=args) trainer.train() if __name__ == '__main__': train()