# Ultralytics YOLO 🚀, GPL-3.0 license import torch from ultralytics.yolo.engine.results import Results from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops from ultralytics.yolo.utils.plotting import save_one_box from ultralytics.yolo.v8.detect.predict import DetectionPredictor class SegmentationPredictor(DetectionPredictor): def postprocess(self, preds, img, orig_imgs): # TODO: filter by classes p = ops.non_max_suppression(preds[0], self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, nc=len(self.model.names), classes=self.args.classes) results = [] proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported for i, pred in enumerate(p): orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs path, _, _, _, _ = self.batch img_path = path[i] if isinstance(path, list) else path if not len(pred): # save empty boxes results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])) continue if self.args.retina_masks: if not isinstance(orig_imgs, torch.Tensor): pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC else: masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC if not isinstance(orig_imgs, torch.Tensor): pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) results.append( Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) return results def write_results(self, idx, results, batch): p, im, im0 = batch log_string = '' if len(im.shape) == 3: im = im[None] # expand for batch dim self.seen += 1 imc = im0.copy() if self.args.save_crop else im0 if self.source_type.webcam or self.source_type.from_img: # batch_size >= 1 log_string += f'{idx}: ' frame = self.dataset.count else: frame = getattr(self.dataset, 'frame', 0) self.data_path = p self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') log_string += '%gx%g ' % im.shape[2:] # print string result = results[idx] if len(result) == 0: return f'{log_string}(no detections), ' det, mask = result.boxes, result.masks # getting tensors TODO: mask mask,box inherit for tensor # Print results for c in det.cls.unique(): n = (det.cls == c).sum() # detections per class log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " # Mask plotting if self.args.save or self.args.show: im_gpu = torch.as_tensor(im0, dtype=torch.float16, device=mask.masks.device).permute( 2, 0, 1).flip(0).contiguous() / 255 if self.args.retina_masks else im[idx] self.plotted_img = result.plot(line_width=self.args.line_thickness, im_gpu=im_gpu, boxes=self.args.boxes) # Write results for j, d in enumerate(reversed(det)): c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item()) if self.args.save_txt: # Write to file seg = mask.xyn[len(det) - j - 1].copy().reshape(-1) # reversed mask.xyn, (n,2) to (n*2) line = (c, *seg) + (conf, ) * self.args.save_conf + (() if id is None else (id, )) with open(f'{self.txt_path}.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if self.args.save_crop: save_one_box(d.xyxy, imc, file=self.save_dir / 'crops' / self.model.names[c] / f'{self.data_path.stem}.jpg', BGR=True) return log_string def predict(cfg=DEFAULT_CFG, use_python=False): model = cfg.model or 'yolov8n-seg.pt' source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ else 'https://ultralytics.com/images/bus.jpg' args = dict(model=model, source=source) if use_python: from ultralytics import YOLO YOLO(model)(**args) else: predictor = SegmentationPredictor(overrides=args) predictor.predict_cli() if __name__ == '__main__': predict()