# Ultralytics YOLO 🚀, GPL-3.0 license import torch from ultralytics.yolo.engine.results import Results from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops from ultralytics.yolo.utils.plotting import colors, save_one_box from ultralytics.yolo.v8.detect.predict import DetectionPredictor class SegmentationPredictor(DetectionPredictor): def postprocess(self, preds, img, orig_img, classes=None): # TODO: filter by classes p = ops.non_max_suppression(preds[0], self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, nm=32, classes=self.args.classes) results = [] proto = preds[1][-1] for i, pred in enumerate(p): shape = orig_img[i].shape if isinstance(orig_img, list) else orig_img.shape if not len(pred): results.append(Results(boxes=pred[:, :6], orig_shape=shape[:2])) # save empty boxes continue if self.args.retina_masks: pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2]) # HWC else: masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() results.append(Results(boxes=pred[:, :6], masks=masks, orig_shape=shape[:2])) return results def write_results(self, idx, results, batch): p, im, im0 = batch log_string = "" if len(im.shape) == 3: im = im[None] # expand for batch dim self.seen += 1 if self.webcam or self.from_img: # batch_size >= 1 log_string += f'{idx}: ' frame = self.dataset.count else: frame = getattr(self.dataset, 'frame', 0) self.data_path = p self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') log_string += '%gx%g ' % im.shape[2:] # print string self.annotator = self.get_annotator(im0) result = results[idx] if len(result) == 0: return log_string det, mask = result.boxes, result.masks # getting tensors TODO: mask mask,box inherit for tensor # Print results for c in det.cls.unique(): n = (det.cls == c).sum() # detections per class log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " # Mask plotting self.annotator.masks( mask.masks, colors=[colors(x, True) for x in det.cls], im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() / 255 if self.args.retina_masks else im[idx]) # Segments if self.args.save_txt: segments = mask.segments # Write results for j, d in enumerate(reversed(det)): cls, conf = d.cls.squeeze(), d.conf.squeeze() if self.args.save_txt: # Write to file seg = segments[j].copy() seg = seg.reshape(-1) # (n,2) to (n*2) line = (cls, *seg, conf) if self.args.save_conf else (cls, *seg) # label format with open(f'{self.txt_path}.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if self.args.save or self.args.save_crop or self.args.show: # Add bbox to image c = int(cls) # integer class label = None if self.args.hide_labels else ( self.model.names[c] if self.args.hide_conf else f'{self.model.names[c]} {conf:.2f}') self.annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) if self.args.boxes else None if self.args.save_crop: imc = im0.copy() save_one_box(d.xyxy, imc, file=self.save_dir / 'crops' / self.model.model.names[c] / f'{self.data_path.stem}.jpg', BGR=True) return log_string def predict(cfg=DEFAULT_CFG): cfg.model = cfg.model or "yolov8n-seg.pt" cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" if (ROOT / "assets").exists() \ else "https://ultralytics.com/images/bus.jpg" predictor = SegmentationPredictor(cfg) predictor.predict_cli() if __name__ == "__main__": predict()