# Ultralytics YOLO 🚀, GPL-3.0 license import contextlib import hashlib import os import subprocess import time from pathlib import Path from tarfile import is_tarfile from zipfile import is_zipfile import cv2 import numpy as np import torch from PIL import ExifTags, Image, ImageOps from ultralytics.yolo.utils import DATASETS_DIR, LOGGER, ROOT, colorstr, yaml_load from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii from ultralytics.yolo.utils.downloads import download from ultralytics.yolo.utils.files import unzip_file from ultralytics.yolo.utils.ops import segments2boxes HELP_URL = "See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data" IMG_FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm" # include image suffixes VID_FORMATS = "asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv" # include video suffixes LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv('RANK', -1)) PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true" # global pin_memory for dataloaders IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation # Get orientation exif tag for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation] == "Orientation": break def img2label_paths(img_paths): # Define label paths as a function of image paths sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}" # /images/, /labels/ substrings return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths] def get_hash(paths): # Returns a single hash value of a list of paths (files or dirs) size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes h = hashlib.md5(str(size).encode()) # hash sizes h.update("".join(paths).encode()) # hash paths return h.hexdigest() # return hash def exif_size(img): # Returns exif-corrected PIL size s = img.size # (width, height) with contextlib.suppress(Exception): rotation = dict(img._getexif().items())[orientation] if rotation in [6, 8]: # rotation 270 or 90 s = (s[1], s[0]) return s def verify_image_label(args): # Verify one image-label pair im_file, lb_file, prefix, keypoint = args # number (missing, found, empty, corrupt), message, segments, keypoints nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None try: # verify images im = Image.open(im_file) im.verify() # PIL verify shape = exif_size(im) # image size shape = (shape[1], shape[0]) # hw assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}" if im.format.lower() in ("jpg", "jpeg"): with open(im_file, "rb") as f: f.seek(-2, 2) if f.read() != b"\xff\xd9": # corrupt JPEG ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved" # verify labels if os.path.isfile(lb_file): nf = 1 # label found with open(lb_file) as f: lb = [x.split() for x in f.read().strip().splitlines() if len(x)] if any(len(x) > 6 for x in lb) and (not keypoint): # is segment classes = np.array([x[0] for x in lb], dtype=np.float32) segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) lb = np.array(lb, dtype=np.float32) nl = len(lb) if nl: if keypoint: assert lb.shape[1] == 56, "labels require 56 columns each" assert (lb[:, 5::3] <= 1).all(), "non-normalized or out of bounds coordinate labels" assert (lb[:, 6::3] <= 1).all(), "non-normalized or out of bounds coordinate labels" kpts = np.zeros((lb.shape[0], 39)) for i in range(len(lb)): kpt = np.delete(lb[i, 5:], np.arange(2, lb.shape[1] - 5, 3)) # remove the occlusion parameter from the GT kpts[i] = np.hstack((lb[i, :5], kpt)) lb = kpts assert lb.shape[1] == 39, "labels require 39 columns each after removing occlusion parameter" else: assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected" assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}" assert (lb[:, 1:] <= 1).all(), f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}" _, i = np.unique(lb, axis=0, return_index=True) if len(i) < nl: # duplicate row check lb = lb[i] # remove duplicates if segments: segments = [segments[x] for x in i] msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed" else: ne = 1 # label empty lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) else: nm = 1 # label missing lb = np.zeros((0, 39), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32) if keypoint: keypoints = lb[:, 5:].reshape(-1, 17, 2) lb = lb[:, :5] return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg except Exception as e: nc = 1 msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}" return [None, None, None, None, None, nm, nf, ne, nc, msg] def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1): """ Args: imgsz (tuple): The image size. polygons (np.ndarray): [N, M], N is the number of polygons, M is the number of points(Be divided by 2). color (int): color downsample_ratio (int): downsample ratio """ mask = np.zeros(imgsz, dtype=np.uint8) polygons = np.asarray(polygons) polygons = polygons.astype(np.int32) shape = polygons.shape polygons = polygons.reshape(shape[0], -1, 2) cv2.fillPoly(mask, polygons, color=color) nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio) # NOTE: fillPoly firstly then resize is trying the keep the same way # of loss calculation when mask-ratio=1. mask = cv2.resize(mask, (nw, nh)) return mask def polygons2masks(imgsz, polygons, color, downsample_ratio=1): """ Args: imgsz (tuple): The image size. polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0) color (int): color downsample_ratio (int): downsample ratio """ masks = [] for si in range(len(polygons)): mask = polygon2mask(imgsz, [polygons[si].reshape(-1)], color, downsample_ratio) masks.append(mask) return np.array(masks) def polygons2masks_overlap(imgsz, segments, downsample_ratio=1): """Return a (640, 640) overlap mask.""" masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio), dtype=np.int32 if len(segments) > 255 else np.uint8) areas = [] ms = [] for si in range(len(segments)): mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1) ms.append(mask) areas.append(mask.sum()) areas = np.asarray(areas) index = np.argsort(-areas) ms = np.array(ms)[index] for i in range(len(segments)): mask = ms[i] * (i + 1) masks = masks + mask masks = np.clip(masks, a_min=0, a_max=i + 1) return masks, index def check_det_dataset(dataset, autodownload=True): # Download, check and/or unzip dataset if not found locally data = check_file(dataset) # Download (optional) extract_dir = '' if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)): download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1) data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml')) extract_dir, autodownload = data.parent, False # Read yaml (optional) if isinstance(data, (str, Path)): data = yaml_load(data, append_filename=True) # dictionary # Checks for k in 'train', 'val', 'names': assert k in data, f"data.yaml '{k}:' field missing ❌" if isinstance(data['names'], (list, tuple)): # old array format data['names'] = dict(enumerate(data['names'])) # convert to dict data['nc'] = len(data['names']) # Resolve paths path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.' if not path.is_absolute(): path = (DATASETS_DIR / path).resolve() data['path'] = path # download scripts for k in 'train', 'val', 'test': if data.get(k): # prepend path if isinstance(data[k], str): x = (path / data[k]).resolve() if not x.exists() and data[k].startswith('../'): x = (path / data[k][3:]).resolve() data[k] = str(x) else: data[k] = [str((path / x).resolve()) for x in data[k]] # Parse yaml train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) if val: val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path if not all(x.exists() for x in val): msg = f"\nDataset '{dataset}' not found ⚠️, missing paths %s" % [str(x) for x in val if not x.exists()] if s and autodownload: LOGGER.warning(msg) else: raise FileNotFoundError(msg) t = time.time() if s.startswith('http') and s.endswith('.zip'): # URL f = Path(s).name # filename LOGGER.info(f'Downloading {s} to {f}...') torch.hub.download_url_to_file(s, f) Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root unzip_file(f, path=DATASETS_DIR) # unzip Path(f).unlink() # remove zip r = None # success elif s.startswith('bash '): # bash script LOGGER.info(f'Running {s} ...') r = os.system(s) else: # python script r = exec(s, {'yaml': data}) # return None dt = f'({round(time.time() - t, 1)}s)' s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌" LOGGER.info(f"Dataset download {s}") check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts return data # dictionary def check_cls_dataset(dataset: str): """ Check a classification dataset such as Imagenet. Copy code This function takes a `dataset` name as input and returns a dictionary containing information about the dataset. If the dataset is not found, it attempts to download the dataset from the internet and save it to the local file system. Args: dataset (str): Name of the dataset. Returns: data (dict): A dictionary containing the following keys and values: 'train': Path object for the directory containing the training set of the dataset 'val': Path object for the directory containing the validation set of the dataset 'nc': Number of classes in the dataset 'names': List of class names in the dataset """ data_dir = (DATASETS_DIR / dataset).resolve() if not data_dir.is_dir(): LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...') t = time.time() if dataset == 'imagenet': subprocess.run(f"bash {ROOT / 'yolo/data/scripts/get_imagenet.sh'}", shell=True, check=True) else: url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip' download(url, dir=data_dir.parent) s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" LOGGER.info(s) train_set = data_dir / "train" test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] # class names list names = dict(enumerate(sorted(names))) return {"train": train_set, "val": test_set, "nc": nc, "names": names}