import torch from ultralytics.tracker import BOTSORT, BYTETracker from ultralytics.yolo.utils import IterableSimpleNamespace, yaml_load from ultralytics.yolo.utils.checks import check_requirements, check_yaml TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT} check_requirements('lap') # for linear_assignment def on_predict_start(predictor): tracker = check_yaml(predictor.args.tracker) cfg = IterableSimpleNamespace(**yaml_load(tracker)) assert cfg.tracker_type in ["bytetrack", "botsort"], \ f"Only support 'bytetrack' and 'botsort' for now, but got '{cfg.tracker_type}'" trackers = [] for _ in range(predictor.dataset.bs): tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30) trackers.append(tracker) predictor.trackers = trackers def on_predict_postprocess_end(predictor): bs = predictor.dataset.bs im0s = predictor.batch[2] im0s = im0s if isinstance(im0s, list) else [im0s] for i in range(bs): det = predictor.results[i].boxes.cpu().numpy() if len(det) == 0: continue tracks = predictor.trackers[i].update(det, im0s[i]) if len(tracks) == 0: continue predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1])) if predictor.results[i].masks is not None: idx = tracks[:, -1].tolist() predictor.results[i].masks = predictor.results[i].masks[idx] def register_tracker(model): model.add_callback("on_predict_start", on_predict_start) model.add_callback("on_predict_postprocess_end", on_predict_postprocess_end)