## Tutorials
* [Train Custom Data](tutorials/train_custom_data.md) 🚀 RECOMMENDED
* [Tips for Best Training Results](tutorials/tips_for_best_training_results.md) ☘️
* [Multi-GPU Training](tutorials/multi_gpu_training.md)
* [PyTorch Hub](tutorials/pytorch_hub_model_loading.md) 🌟 NEW
* [TFLite, ONNX, CoreML, TensorRT Export](tutorials/model_export.md) 🚀
* [NVIDIA Jetson platform Deployment](tutorials/running_on_jetson_nano.md) 🌟 NEW
* [Test-Time Augmentation (TTA)](tutorials/test_time_augmentation.md)
* [Model Ensembling](tutorials/model_ensembling.md)
* [Model Pruning/Sparsity](tutorials/model_pruning_and_sparsity.md)
* [Hyperparameter Evolution](tutorials/hyperparameter_evolution.md)
* [Transfer Learning with Frozen Layers](tutorials/transfer_learning_with_frozen_layers.md)
* [Architecture Summary](tutorials/architecture_description.md) 🌟 NEW
* [Roboflow for Datasets, Labeling, and Active Learning](tutorials/roboflow_datasets_integration.md)
* [ClearML Logging](tutorials/clearml_logging_integration.md) 🌟 NEW
* [YOLOv5 with Neural Magic's Deepsparse](tutorials/neural_magic_pruning_quantization.md) 🌟 NEW
* [Comet Logging](tutorials/comet_logging_integration.md) 🌟 NEW
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies
including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/)
and [PyTorch](https://pytorch.org/) preinstalled):
- **Notebooks** with free
GPU: