# Ultralytics YOLO 🚀, AGPL-3.0 license # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA) # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! -------- # Example usage: yolo train data=xView.yaml # parent # ├── ultralytics # └── datasets # └── xView ← downloads here (20.7 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/xView # dataset root dir train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images # Classes names: 0: Fixed-wing Aircraft 1: Small Aircraft 2: Cargo Plane 3: Helicopter 4: Passenger Vehicle 5: Small Car 6: Bus 7: Pickup Truck 8: Utility Truck 9: Truck 10: Cargo Truck 11: Truck w/Box 12: Truck Tractor 13: Trailer 14: Truck w/Flatbed 15: Truck w/Liquid 16: Crane Truck 17: Railway Vehicle 18: Passenger Car 19: Cargo Car 20: Flat Car 21: Tank car 22: Locomotive 23: Maritime Vessel 24: Motorboat 25: Sailboat 26: Tugboat 27: Barge 28: Fishing Vessel 29: Ferry 30: Yacht 31: Container Ship 32: Oil Tanker 33: Engineering Vehicle 34: Tower crane 35: Container Crane 36: Reach Stacker 37: Straddle Carrier 38: Mobile Crane 39: Dump Truck 40: Haul Truck 41: Scraper/Tractor 42: Front loader/Bulldozer 43: Excavator 44: Cement Mixer 45: Ground Grader 46: Hut/Tent 47: Shed 48: Building 49: Aircraft Hangar 50: Damaged Building 51: Facility 52: Construction Site 53: Vehicle Lot 54: Helipad 55: Storage Tank 56: Shipping container lot 57: Shipping Container 58: Pylon 59: Tower # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | import json import os from pathlib import Path import numpy as np from PIL import Image from tqdm import tqdm from ultralytics.yolo.data.utils import autosplit from ultralytics.yolo.utils.ops import xyxy2xywhn def convert_labels(fname=Path('xView/xView_train.geojson')): # Convert xView geoJSON labels to YOLO format path = fname.parent with open(fname) as f: print(f'Loading {fname}...') data = json.load(f) # Make dirs labels = Path(path / 'labels' / 'train') os.system(f'rm -rf {labels}') labels.mkdir(parents=True, exist_ok=True) # xView classes 11-94 to 0-59 xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11, 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1, 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46, 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59] shapes = {} for feature in tqdm(data['features'], desc=f'Converting {fname}'): p = feature['properties'] if p['bounds_imcoords']: id = p['image_id'] file = path / 'train_images' / id if file.exists(): # 1395.tif missing try: box = np.array([int(num) for num in p['bounds_imcoords'].split(",")]) assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}' cls = p['type_id'] cls = xview_class2index[int(cls)] # xView class to 0-60 assert 59 >= cls >= 0, f'incorrect class index {cls}' # Write YOLO label if id not in shapes: shapes[id] = Image.open(file).size box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) with open((labels / id).with_suffix('.txt'), 'a') as f: f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt except Exception as e: print(f'WARNING: skipping one label for {file}: {e}') # Download manually from https://challenge.xviewdataset.org dir = Path(yaml['path']) # dataset root dir # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) # download(urls, dir=dir) # Convert labels convert_labels(dir / 'xView_train.geojson') # Move images images = Path(dir / 'images') images.mkdir(parents=True, exist_ok=True) Path(dir / 'train_images').rename(dir / 'images' / 'train') Path(dir / 'val_images').rename(dir / 'images' / 'val') # Split autosplit(dir / 'images' / 'train')