# Ultralytics YOLO 🚀, AGPL-3.0 license from pathlib import Path from ultralytics import YOLO from ultralytics.yolo.cfg import get_cfg from ultralytics.yolo.engine.exporter import Exporter from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, SETTINGS from ultralytics.yolo.v8 import classify, detect, segment CFG_DET = 'yolov8n.yaml' CFG_SEG = 'yolov8n-seg.yaml' CFG_CLS = 'squeezenet1_0' CFG = get_cfg(DEFAULT_CFG) MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n' SOURCE = ROOT / 'assets' def test_func(model=None): print('callback test passed') def test_export(): exporter = Exporter() exporter.add_callback('on_export_start', test_func) assert test_func in exporter.callbacks['on_export_start'], 'callback test failed' f = exporter(model=YOLO(CFG_DET).model) YOLO(f)(SOURCE) # exported model inference def test_detect(): overrides = {'data': 'coco8.yaml', 'model': CFG_DET, 'imgsz': 32, 'epochs': 1, 'save': False} CFG.data = 'coco8.yaml' # Trainer trainer = detect.DetectionTrainer(overrides=overrides) trainer.add_callback('on_train_start', test_func) assert test_func in trainer.callbacks['on_train_start'], 'callback test failed' trainer.train() # Validator val = detect.DetectionValidator(args=CFG) val.add_callback('on_val_start', test_func) assert test_func in val.callbacks['on_val_start'], 'callback test failed' val(model=trainer.best) # validate best.pt # Predictor pred = detect.DetectionPredictor(overrides={'imgsz': [64, 64]}) pred.add_callback('on_predict_start', test_func) assert test_func in pred.callbacks['on_predict_start'], 'callback test failed' result = pred(source=SOURCE, model=f'{MODEL}.pt') assert len(result), 'predictor test failed' overrides['resume'] = trainer.last trainer = detect.DetectionTrainer(overrides=overrides) try: trainer.train() except Exception as e: print(f'Expected exception caught: {e}') return Exception('Resume test failed!') def test_segment(): overrides = {'data': 'coco8-seg.yaml', 'model': CFG_SEG, 'imgsz': 32, 'epochs': 1, 'save': False} CFG.data = 'coco8-seg.yaml' # YOLO(CFG_SEG).train(**overrides) # works # trainer trainer = segment.SegmentationTrainer(overrides=overrides) trainer.add_callback('on_train_start', test_func) assert test_func in trainer.callbacks['on_train_start'], 'callback test failed' trainer.train() # Validator val = segment.SegmentationValidator(args=CFG) val.add_callback('on_val_start', test_func) assert test_func in val.callbacks['on_val_start'], 'callback test failed' val(model=trainer.best) # validate best.pt # Predictor pred = segment.SegmentationPredictor(overrides={'imgsz': [64, 64]}) pred.add_callback('on_predict_start', test_func) assert test_func in pred.callbacks['on_predict_start'], 'callback test failed' result = pred(source=SOURCE, model=f'{MODEL}-seg.pt') assert len(result), 'predictor test failed' # Test resume overrides['resume'] = trainer.last trainer = segment.SegmentationTrainer(overrides=overrides) try: trainer.train() except Exception as e: print(f'Expected exception caught: {e}') return Exception('Resume test failed!') def test_classify(): overrides = {'data': 'imagenet10', 'model': 'yolov8n-cls.yaml', 'imgsz': 32, 'epochs': 1, 'save': False} CFG.data = 'imagenet10' CFG.imgsz = 32 # YOLO(CFG_SEG).train(**overrides) # works # Trainer trainer = classify.ClassificationTrainer(overrides=overrides) trainer.add_callback('on_train_start', test_func) assert test_func in trainer.callbacks['on_train_start'], 'callback test failed' trainer.train() # Validator val = classify.ClassificationValidator(args=CFG) val.add_callback('on_val_start', test_func) assert test_func in val.callbacks['on_val_start'], 'callback test failed' val(model=trainer.best) # Predictor pred = classify.ClassificationPredictor(overrides={'imgsz': [64, 64]}) pred.add_callback('on_predict_start', test_func) assert test_func in pred.callbacks['on_predict_start'], 'callback test failed' result = pred(source=SOURCE, model=trainer.best) assert len(result), 'predictor test failed'