# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.data.augment import LetterBox from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import ops class RTDETRPredictor(BasePredictor): """ A class extending the BasePredictor class for prediction based on an RT-DETR detection model. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.rtdetr import RTDETRPredictor args = dict(model='rtdetr-l.pt', source=ASSETS) predictor = RTDETRPredictor(overrides=args) predictor.predict_cli() ``` """ def postprocess(self, preds, img, orig_imgs): """Postprocess predictions and returns a list of Results objects.""" nd = preds[0].shape[-1] bboxes, scores = preds[0].split((4, nd - 4), dim=-1) results = [] for i, bbox in enumerate(bboxes): # (300, 4) bbox = ops.xywh2xyxy(bbox) score, cls = scores[i].max(-1, keepdim=True) # (300, 1) idx = score.squeeze(-1) > self.args.conf # (300, ) if self.args.classes is not None: idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs oh, ow = orig_img.shape[:2] if not isinstance(orig_imgs, torch.Tensor): pred[..., [0, 2]] *= ow pred[..., [1, 3]] *= oh path = self.batch[0] img_path = path[i] if isinstance(path, list) else path results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) return results def pre_transform(self, im): """Pre-transform input image before inference. Args: im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. Notes: The size must be square(640) and scaleFilled. Returns: (list): A list of transformed imgs. """ return [LetterBox(self.imgsz, auto=False, scaleFill=True)(image=x) for x in im]