# Ultralytics YOLO 🚀, AGPL-3.0 license from pathlib import Path from ultralytics import SAM, YOLO def auto_annotate(data, det_model='yolov8x.pt', sam_model='sam_b.pt', device='', output_dir=None): """ Automatically annotates images using a YOLO object detection model and a SAM segmentation model. Args: data (str): Path to a folder containing images to be annotated. det_model (str, optional): Pre-trained YOLO detection model. Defaults to 'yolov8x.pt'. sam_model (str, optional): Pre-trained SAM segmentation model. Defaults to 'sam_b.pt'. device (str, optional): Device to run the models on. Defaults to an empty string (CPU or GPU, if available). output_dir (str | None | optional): Directory to save the annotated results. Defaults to a 'labels' folder in the same directory as 'data'. Example: ```python from ultralytics.data.annotator import auto_annotate auto_annotate(data='ultralytics/assets', det_model='yolov8n.pt', sam_model='mobile_sam.pt') ``` """ det_model = YOLO(det_model) sam_model = SAM(sam_model) data = Path(data) if not output_dir: output_dir = data.parent / f'{data.stem}_auto_annotate_labels' Path(output_dir).mkdir(exist_ok=True, parents=True) det_results = det_model(data, stream=True, device=device) for result in det_results: class_ids = result.boxes.cls.int().tolist() # noqa if len(class_ids): boxes = result.boxes.xyxy # Boxes object for bbox outputs sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device) segments = sam_results[0].masks.xyn # noqa with open(f'{str(Path(output_dir) / Path(result.path).stem)}.txt', 'w') as f: for i in range(len(segments)): s = segments[i] if len(s) == 0: continue segment = map(str, segments[i].reshape(-1).tolist()) f.write(f'{class_ids[i]} ' + ' '.join(segment) + '\n')