""" Simple training loop; Boilerplate that could apply to any arbitrary neural network, """ # TODOs # 1. finish _set_model_attributes # 2. allow num_class update for both pretrained and csv_loaded models # 3. save import os import time from collections import defaultdict from datetime import datetime from pathlib import Path from typing import Dict, Union import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn from omegaconf import DictConfig, OmegaConf from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from tqdm import tqdm import ultralytics.yolo.utils as utils import ultralytics.yolo.utils.loggers as loggers from ultralytics.yolo.data.utils import check_dataset, check_dataset_yaml from ultralytics.yolo.utils import LOGGER, ROOT from ultralytics.yolo.utils.checks import check_file, check_yaml from ultralytics.yolo.utils.files import increment_path, save_yaml from ultralytics.yolo.utils.modeling import get_model DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml" class BaseTrainer: def __init__(self, config=DEFAULT_CONFIG, overrides={}): self.console = LOGGER self.args = self._get_config(config, overrides) self.validator = None self.model = None self.callbacks = defaultdict(list) self.console.info(f"Training config: \n args: \n {self.args}") # to debug # Directories self.save_dir = increment_path(Path(self.args.project) / self.args.name, exist_ok=self.args.exist_ok) self.wdir = self.save_dir / 'weights' self.wdir.mkdir(parents=True, exist_ok=True) # make dir self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # Save run settings save_yaml(self.save_dir / 'args.yaml', OmegaConf.to_container(self.args, resolve=True)) # device self.device = utils.torch_utils.select_device(self.args.device, self.args.batch_size) self.console.info(f"running on device {self.device}") self.scaler = amp.GradScaler(enabled=self.device.type != 'cpu') # Model and Dataloaders. self.data = self.args.data if self.data.endswith(".yaml"): self.data = check_dataset_yaml(self.data) else: self.data = check_dataset(self.data) self.trainset, self.testset = self.get_dataset(self.data) if self.args.model: self.model = self.get_model(self.args.model, self.data) # epoch level metrics self.metrics = {} # handle metrics returned by validator self.best_fitness = None self.fitness = None self.loss = None for callback, func in loggers.default_callbacks.items(): self.add_callback(callback, func) def _get_config(self, config: Union[str, DictConfig], overrides: Union[str, Dict] = {}): """ Accepts yaml file name or DictConfig containing experiment configuration. Returns training args namespace :param config: Optional file name or DictConfig object """ if isinstance(config, (str, Path)): config = OmegaConf.load(config) elif isinstance(config, Dict): config = OmegaConf.create(config) # override if isinstance(overrides, str): overrides = OmegaConf.load(overrides) elif isinstance(overrides, Dict): overrides = OmegaConf.create(overrides) return OmegaConf.merge(config, overrides) def add_callback(self, onevent: str, callback): """ appends the given callback """ self.callbacks[onevent].append(callback) def set_callback(self, onevent: str, callback): """ overrides the existing callbacks with the given callback """ self.callbacks[onevent] = [callback] def trigger_callbacks(self, onevent: str): for callback in self.callbacks.get(onevent, []): callback(self) def train(self): world_size = torch.cuda.device_count() if world_size > 1: mp.spawn(self._do_train, args=(world_size,), nprocs=world_size, join=True) else: self._do_train(-1, 1) def _setup_ddp(self, rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '9020' torch.cuda.set_device(rank) self.device = torch.device('cuda', rank) print(f"RANK - WORLD_SIZE - DEVICE: {rank} - {world_size} - {self.device} ") dist.init_process_group("nccl" if dist.is_nccl_available() else "gloo", rank=rank, world_size=world_size) self.model = self.model.to(self.device) self.model = DDP(self.model, device_ids=[rank]) self.args.batch_size = self.args.batch_size // world_size def _setup_train(self, rank): """ Builds dataloaders and optimizer on correct rank process """ self.optimizer = build_optimizer(model=self.model, name=self.args.optimizer, lr=self.args.lr0, momentum=self.args.momentum, decay=self.args.weight_decay) self.train_loader = self.get_dataloader(self.trainset, batch_size=self.args.batch_size, rank=rank) if rank in {0, -1}: print(" Creating testloader rank :", rank) self.test_loader = self.get_dataloader(self.testset, batch_size=self.args.batch_size * 2, rank=rank) self.validator = self.get_validator() print("created testloader :", rank) self.console.info(self.progress_string()) def _set_model_attributes(self): # TODO: fix and use after self.data_dict is available ''' head = utils.torch_utils.de_parallel(self.model).model[-1] self.args.box *= 3 / head.nl # scale to layers self.args.cls *= head.nc / 80 * 3 / head.nl # scale to classes and layers self.args.obj *= (self.args.img_size / 640) ** 2 * 3 / nl # scale to image size and layers model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights model.names = names ''' def _do_train(self, rank, world_size): if world_size > 1: self._setup_ddp(rank, world_size) # callback hook. before_train self._setup_train(rank) self.epoch = 1 self.epoch_time = None self.epoch_time_start = time.time() self.train_time_start = time.time() for epoch in range(self.args.epochs): # callback hook. on_epoch_start self.model.train() pbar = enumerate(self.train_loader) if rank in {-1, 0}: pbar = tqdm(enumerate(self.train_loader), total=len(self.train_loader), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') tloss = None for i, batch in pbar: # img, label (classification)/ img, targets, paths, _, masks(detection) # callback hook. on_batch_start # forward batch = self.preprocess_batch(batch) # TODO: warmup, multiscale preds = self.model(batch["img"]) self.loss, self.loss_items = self.criterion(preds, batch) tloss = (tloss * i + self.loss_items) / (i + 1) if tloss is not None else self.loss_items # backward self.model.zero_grad(set_to_none=True) self.scaler.scale(self.loss).backward() # optimize self.optimizer_step() self.trigger_callbacks('on_batch_end') # log mem = (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) loss_len = tloss.shape[0] if len(tloss.size()) else 1 losses = tloss if loss_len > 1 else torch.unsqueeze(tloss, 0) if rank in {-1, 0}: pbar.set_description( (" {} " + "{:.3f} " * (2 + loss_len)).format(f'{epoch + 1}/{self.args.epochs}', mem, *losses, batch["img"].shape[-1])) if rank in [-1, 0]: # validation # callback: on_val_start() self.validate() # callback: on_val_end() # save model if (not self.args.nosave) or (self.epoch + 1 == self.args.epochs): self.save_model() # callback; on_model_save self.epoch += 1 tnow = time.time() self.epoch_time = tnow - self.epoch_time_start self.epoch_time_start = tnow # TODO: termination condition self.log(f"\nTraining complete ({(time.time() - self.train_time_start) / 3600:.3f} hours) \ \n{self.usage_help()}") # callback; on_train_end dist.destroy_process_group() if world_size != 1 else None def save_model(self): ckpt = { 'epoch': self.epoch, 'best_fitness': self.best_fitness, 'model': None, # deepcopy(ema.ema).half(), # deepcopy(de_parallel(model)).half(), 'ema': None, # deepcopy(ema.ema).half(), 'updates': None, # ema.updates, 'optimizer': None, # optimizer.state_dict(), 'train_args': self.args, 'date': datetime.now().isoformat()} # Save last, best and delete torch.save(ckpt, self.last) if self.best_fitness == self.fitness: torch.save(ckpt, self.best) del ckpt def get_dataloader(self, dataset_path, batch_size=16, rank=0): """ Returns dataloader derived from torch.data.Dataloader """ pass def get_dataset(self, data): """ Get train, val path from data dict if it exists. Returns None if data format is not recognized """ return data["train"], data["val"] def get_model(self, model: str, data: Dict): """ load/create/download model for any task """ pretrained = False if not str(model).endswith(".yaml"): pretrained = True weights = get_model(model) # rename this to something less confusing? model = self.load_model(model_cfg=model if not pretrained else None, weights=weights if pretrained else None, data=self.data) return model def load_model(self, model_cfg, weights, data): raise NotImplementedError("This task trainer doesn't support loading cfg files") def get_validator(self): pass def optimizer_step(self): self.scaler.unscale_(self.optimizer) # unscale gradients torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients self.scaler.step(self.optimizer) self.scaler.update() self.optimizer.zero_grad() def preprocess_batch(self, batch): """ Allows custom preprocessing model inputs and ground truths depending on task type """ return batch def validate(self): """ Runs validation on test set using self.validator. # TODO: discuss validator class. Enforce that a validator metrics dict should contain "fitness" metric. """ self.metrics = self.validator(self) self.fitness = self.metrics.get("fitness") or (-self.loss) # use loss as fitness measure if not found if not self.best_fitness or self.best_fitness < self.fitness: self.best_fitness = self.fitness def build_targets(self, preds, targets): pass def criterion(self, preds, batch): """ Returns loss and individual loss items as Tensor """ pass def progress_string(self): """ Returns progress string depending on task type. """ return '' def usage_help(self): """ Returns usage functionality. gets printed to the console after training. """ pass def log(self, text, rank=-1): """ Logs the given text to given ranks process if provided, otherwise logs to all ranks :param text: text to log :param rank: List[Int] """ if rank in {-1, 0}: self.console.info(text) def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): # TODO: 1. docstring with example? 2. Move this inside Trainer? or utils? # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay g = [], [], [] # optimizer parameter groups bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay) g[2].append(v.bias) if isinstance(v, bn): # weight (no decay) g[1].append(v.weight) elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) g[0].append(v.weight) if name == 'Adam': optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum elif name == 'AdamW': optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) elif name == 'RMSProp': optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) elif name == 'SGD': optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) else: raise NotImplementedError(f'Optimizer {name} not implemented.') optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) LOGGER.info(f"optimizer: {type(optimizer).__name__}(lr={lr}) with parameter groups " f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias") return optimizer # Dummy validator def val(trainer: BaseTrainer): trainer.console.info("validating") return {"metric_1": 0.1, "metric_2": 0.2, "fitness": 1}