import os import shutil import hydra import ultralytics import ultralytics.yolo.v8 as yolo from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG from .utils import LOGGER, colorstr @hydra.main(version_base=None, config_path="utils/configs", config_name="default") def cli(cfg): LOGGER.info(f"{colorstr(f'Ultralytics YOLO v{ultralytics.__version__}')}") module_file = None if cfg.task.lower() == "init": # special case shutil.copy2(DEFAULT_CONFIG, os.getcwd()) LOGGER.info(f""" {colorstr("YOLO :")} configuration saved to {os.getcwd()}/{DEFAULT_CONFIG.name}. To run experiments using custom configuration: yolo task='task' mode='mode' --config-name config_file.yaml """) return elif cfg.task.lower() == "detect": module_file = yolo.detect elif cfg.task.lower() == "segment": module_file = yolo.segment elif cfg.task.lower() == "classify": module_file = yolo.classify if not module_file: raise Exception("task not recognized. Choices are `'detect', 'segment', 'classify'`") module_function = None if cfg.mode.lower() == "train": module_function = module_file.train elif cfg.mode.lower() == "val": module_function = module_file.val elif cfg.mode.lower() == "infer": module_function = module_file.infer if not module_function: raise Exception("mode not recognized. Choices are `'train', 'val', 'infer'`") module_function(cfg)