# Ultralytics YOLO 🚀, GPL-3.0 license """ Ultralytics Results, Boxes and Masks classes for handling inference results Usage: See https://docs.ultralytics.com/predict/ """ import pprint from copy import deepcopy from functools import lru_cache import numpy as np import torch import torchvision.transforms.functional as F from ultralytics.yolo.utils import LOGGER, ops from ultralytics.yolo.utils.plotting import Annotator, colors class Results: """ A class for storing and manipulating inference results. Args: orig_img (numpy.ndarray): The original image as a numpy array. path (str): The path to the image file. names (List[str]): A list of class names. boxes (List[List[float]], optional): A list of bounding box coordinates for each detection. masks (numpy.ndarray, optional): A 3D numpy array of detection masks, where each mask is a binary image. probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class. Attributes: orig_img (numpy.ndarray): The original image as a numpy array. orig_shape (tuple): The original image shape in (height, width) format. boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. masks (Masks, optional): A Masks object containing the detection masks. probs (numpy.ndarray, optional): A 2D numpy array of detection probabilities for each class. names (List[str]): A list of class names. path (str): The path to the image file. _keys (tuple): A tuple of attribute names for non-empty attributes. """ def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None) -> None: self.orig_img = orig_img self.orig_shape = orig_img.shape[:2] self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks self.probs = probs if probs is not None else None self.names = names self.path = path self._keys = (k for k in ('boxes', 'masks', 'probs') if getattr(self, k) is not None) def pandas(self): pass # TODO masks.pandas + boxes.pandas + cls.pandas def __getitem__(self, idx): r = Results(orig_img=self.orig_img, path=self.path, names=self.names) for k in self._keys: setattr(r, k, getattr(self, k)[idx]) return r def update(self, boxes=None, masks=None, probs=None): if boxes is not None: self.boxes = Boxes(boxes, self.orig_shape) if masks is not None: self.masks = Masks(masks, self.orig_shape) if boxes is not None: self.probs = probs def cpu(self): r = Results(orig_img=self.orig_img, path=self.path, names=self.names) for k in self._keys: setattr(r, k, getattr(self, k).cpu()) return r def numpy(self): r = Results(orig_img=self.orig_img, path=self.path, names=self.names) for k in self._keys: setattr(r, k, getattr(self, k).numpy()) return r def cuda(self): r = Results(orig_img=self.orig_img, path=self.path, names=self.names) for k in self._keys: setattr(r, k, getattr(self, k).cuda()) return r def to(self, *args, **kwargs): r = Results(orig_img=self.orig_img, path=self.path, names=self.names) for k in self._keys: setattr(r, k, getattr(self, k).to(*args, **kwargs)) return r def __len__(self): for k in self._keys: return len(getattr(self, k)) def __str__(self): attr = {k: v for k, v in vars(self).items() if not isinstance(v, type(self))} return pprint.pformat(attr, indent=2, width=120, depth=10, compact=True) def __repr__(self): return self.__str__() def __getattr__(self, attr): name = self.__class__.__name__ raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") def plot(self, show_conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): """ Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image. Args: show_conf (bool): Whether to show the detection confidence score. line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size. font_size (float, optional): The font size of the text. If None, it is scaled to the image size. font (str): The font to use for the text. pil (bool): Whether to return the image as a PIL Image. example (str): An example string to display. Useful for indicating the expected format of the output. Returns: (None) or (PIL.Image): If `pil` is True, a PIL Image is returned. Otherwise, nothing is returned. """ img = deepcopy(self.orig_img) annotator = Annotator(img, line_width, font_size, font, pil, example) boxes = self.boxes masks = self.masks logits = self.probs names = self.names if boxes is not None: for d in reversed(boxes): cls, conf = d.cls.squeeze(), d.conf.squeeze() c = int(cls) label = (f'{names[c]}' if names else f'{c}') + (f'{conf:.2f}' if show_conf else '') annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True)) if masks is not None: im = torch.as_tensor(img, dtype=torch.float16, device=masks.data.device).permute(2, 0, 1).flip(0) im = F.resize(im.contiguous(), masks.data.shape[1:]) / 255 annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im) if logits is not None: n5 = min(len(self.names), 5) top5i = logits.argsort(0, descending=True)[:n5].tolist() # top 5 indices text = f"{', '.join(f'{names[j] if names else j} {logits[j]:.2f}' for j in top5i)}, " annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors return img class Boxes: """ A class for storing and manipulating detection boxes. Args: boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, with shape (num_boxes, 6). The last two columns should contain confidence and class values. orig_shape (tuple): Original image size, in the format (height, width). Attributes: boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, with shape (num_boxes, 6). orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width). is_track (bool): True if the boxes also include track IDs, False otherwise. Properties: xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format. conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes. cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes. id (torch.Tensor) or (numpy.ndarray): The track IDs of the boxes (if available). xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format. xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size. xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size. data (torch.Tensor): The raw bboxes tensor Methods: cpu(): Move the object to CPU memory. numpy(): Convert the object to a numpy array. cuda(): Move the object to CUDA memory. to(*args, **kwargs): Move the object to the specified device. pandas(): Convert the object to a pandas DataFrame (not yet implemented). """ def __init__(self, boxes, orig_shape) -> None: if boxes.ndim == 1: boxes = boxes[None, :] n = boxes.shape[-1] assert n in {6, 7}, f'expected `n` in [6, 7], but got {n}' # xyxy, (track_id), conf, cls # TODO self.is_track = n == 7 self.boxes = boxes self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \ else np.asarray(orig_shape) @property def xyxy(self): return self.boxes[:, :4] @property def conf(self): return self.boxes[:, -2] @property def cls(self): return self.boxes[:, -1] @property def id(self): return self.boxes[:, -3] if self.is_track else None @property @lru_cache(maxsize=2) # maxsize 1 should suffice def xywh(self): return ops.xyxy2xywh(self.xyxy) @property @lru_cache(maxsize=2) def xyxyn(self): return self.xyxy / self.orig_shape[[1, 0, 1, 0]] @property @lru_cache(maxsize=2) def xywhn(self): return self.xywh / self.orig_shape[[1, 0, 1, 0]] def cpu(self): return Boxes(self.boxes.cpu(), self.orig_shape) def numpy(self): return Boxes(self.boxes.numpy(), self.orig_shape) def cuda(self): return Boxes(self.boxes.cuda(), self.orig_shape) def to(self, *args, **kwargs): return Boxes(self.boxes.to(*args, **kwargs), self.orig_shape) def pandas(self): LOGGER.info('results.pandas() method not yet implemented') ''' new = copy(self) # return copy ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) return new ''' @property def shape(self): return self.boxes.shape @property def data(self): return self.boxes def __len__(self): # override len(results) return len(self.boxes) def __str__(self): return self.boxes.__str__() def __repr__(self): return (f'{self.__class__.__module__}.{self.__class__.__name__}\n' f'type: {self.boxes.__class__.__module__}.{self.boxes.__class__.__name__}\n' f'shape: {self.boxes.shape}\n' f'dtype: {self.boxes.dtype}\n' f'{self.boxes.__repr__()}') def __getitem__(self, idx): return Boxes(self.boxes[idx], self.orig_shape) def __getattr__(self, attr): name = self.__class__.__name__ raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") class Masks: """ A class for storing and manipulating detection masks. Args: masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). orig_shape (tuple): Original image size, in the format (height, width). Attributes: masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). orig_shape (tuple): Original image size, in the format (height, width). Properties: segments (list): A list of segments which includes x, y, w, h, label, confidence, and mask of each detection. Methods: cpu(): Returns a copy of the masks tensor on CPU memory. numpy(): Returns a copy of the masks tensor as a numpy array. cuda(): Returns a copy of the masks tensor on GPU memory. to(): Returns a copy of the masks tensor with the specified device and dtype. __len__(): Returns the number of masks in the tensor. __str__(): Returns a string representation of the masks tensor. __repr__(): Returns a detailed string representation of the masks tensor. __getitem__(): Returns a new Masks object with the masks at the specified index. __getattr__(): Raises an AttributeError with a list of valid attributes and properties. """ def __init__(self, masks, orig_shape) -> None: self.masks = masks # N, h, w self.orig_shape = orig_shape @property @lru_cache(maxsize=1) def segments(self): return [ ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=True) for x in ops.masks2segments(self.masks)] @property def shape(self): return self.masks.shape @property def data(self): return self.masks def cpu(self): return Masks(self.masks.cpu(), self.orig_shape) def numpy(self): return Masks(self.masks.numpy(), self.orig_shape) def cuda(self): return Masks(self.masks.cuda(), self.orig_shape) def to(self, *args, **kwargs): return Masks(self.masks.to(*args, **kwargs), self.orig_shape) def __len__(self): # override len(results) return len(self.masks) def __str__(self): return self.masks.__str__() def __repr__(self): return (f'{self.__class__.__module__}.{self.__class__.__name__}\n' f'type: {self.masks.__class__.__module__}.{self.masks.__class__.__name__}\n' f'shape: {self.masks.shape}\n' f'dtype: {self.masks.dtype}\n' f'{self.masks.__repr__()}') def __getitem__(self, idx): return Masks(self.masks[idx], self.orig_shape) def __getattr__(self, attr): name = self.__class__.__name__ raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")