import cv2 import hydra import numpy as np from ultralytics.yolo.data import build_dataloader from ultralytics.yolo.utils import ROOT from ultralytics.yolo.utils.plotting import plot_images DEFAULT_CONFIG = ROOT / "yolo/utils/configs/default.yaml" class Colors: # Ultralytics color palette https://ultralytics.com/ def __init__(self): # hex = matplotlib.colors.TABLEAU_COLORS.values() hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') self.palette = [self.hex2rgb(f'#{c}') for c in hexs] self.n = len(self.palette) def __call__(self, i, bgr=False): c = self.palette[int(i) % self.n] return (c[2], c[1], c[0]) if bgr else c @staticmethod def hex2rgb(h): # rgb order (PIL) return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) colors = Colors() # create instance for 'from utils.plots import colors' def plot_one_box(x, img, color=None, label=None, line_thickness=None): import random # Plots one bounding box on image img tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText( img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA, ) @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name) def test(cfg): cfg.task = "detect" cfg.mode = "train" dataloader, _ = build_dataloader( cfg=cfg, batch_size=4, img_path="/d/dataset/COCO/coco128-seg/images", stride=32, label_path=None, mode=cfg.mode, ) for d in dataloader: images = d["img"] cls = d["cls"].squeeze(-1) bboxes = d["bboxes"] paths = d["im_file"] batch_idx = d["batch_idx"] result = plot_images(images, batch_idx, cls, bboxes, paths=paths) cv2.imshow("p", result) if cv2.waitKey(0) == ord("q"): break if __name__ == "__main__": test() # test(augment=True, rect=False) # test(augment=False, rect=True) # test(augment=False, rect=False)