# Ultralytics YOLO 🚀, AGPL-3.0 license """ Model validation metrics """ import math import warnings from pathlib import Path import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn from ultralytics.yolo.utils import LOGGER, SimpleClass, TryExcept, plt_settings OKS_SIGMA = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 # Boxes def box_area(box): """Return box area, where box shape is xyxy(4,n).""" return (box[2] - box[0]) * (box[3] - box[1]) def bbox_ioa(box1, box2, eps=1e-7): """ Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format. Args: box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes. box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. Returns: (np.array): A numpy array of shape (n, m) representing the intersection over box2 area. """ # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1.T b2_x1, b2_y1, b2_x2, b2_y2 = box2.T # Intersection area inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \ (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0) # box2 area box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps # Intersection over box2 area return inter_area / box2_area def box_iou(box1, box2, eps=1e-7): """ Calculate intersection-over-union (IoU) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py Args: box1 (torch.Tensor): A tensor of shape (N, 4) representing N bounding boxes. box2 (torch.Tensor): A tensor of shape (M, 4) representing M bounding boxes. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. Returns: (torch.Tensor): An NxM tensor containing the pairwise IoU values for every element in box1 and box2. """ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2) inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2) # IoU = inter / (area1 + area2 - inter) return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps) def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): """ Calculate Intersection over Union (IoU) of box1(1, 4) to box2(n, 4). Args: box1 (torch.Tensor): A tensor representing a single bounding box with shape (1, 4). box2 (torch.Tensor): A tensor representing n bounding boxes with shape (n, 4). xywh (bool, optional): If True, input boxes are in (x, y, w, h) format. If False, input boxes are in (x1, y1, x2, y2) format. Defaults to True. GIoU (bool, optional): If True, calculate Generalized IoU. Defaults to False. DIoU (bool, optional): If True, calculate Distance IoU. Defaults to False. CIoU (bool, optional): If True, calculate Complete IoU. Defaults to False. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. Returns: (torch.Tensor): IoU, GIoU, DIoU, or CIoU values depending on the specified flags. """ # Get the coordinates of bounding boxes if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ else: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps # Intersection area inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \ (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0) # Union Area union = w1 * h1 + w2 * h2 - inter + eps # IoU iou = inter / union if CIoU or DIoU or GIoU: cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf return iou # IoU def mask_iou(mask1, mask2, eps=1e-7): """ Calculate masks IoU. Args: mask1 (torch.Tensor): A tensor of shape (N, n) where N is the number of ground truth objects and n is the product of image width and height. mask2 (torch.Tensor): A tensor of shape (M, n) where M is the number of predicted objects and n is the product of image width and height. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. Returns: (torch.Tensor): A tensor of shape (N, M) representing masks IoU. """ intersection = torch.matmul(mask1, mask2.t()).clamp(0) union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection return intersection / (union + eps) def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7): """ Calculate Object Keypoint Similarity (OKS). Args: kpt1 (torch.Tensor): A tensor of shape (N, 17, 3) representing ground truth keypoints. kpt2 (torch.Tensor): A tensor of shape (M, 17, 3) representing predicted keypoints. area (torch.Tensor): A tensor of shape (N,) representing areas from ground truth. sigma (list): A list containing 17 values representing keypoint scales. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. Returns: (torch.Tensor): A tensor of shape (N, M) representing keypoint similarities. """ d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2 # (N, M, 17) sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, ) kpt_mask = kpt1[..., 2] != 0 # (N, 17) e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2 # from cocoeval # e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps) def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps # Losses class FocalLoss(nn.Module): """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5).""" def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): """Initialize FocalLoss object with given loss function and hyperparameters.""" super().__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): """Calculates and updates confusion matrix for object detection/classification tasks.""" loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'None' return loss class ConfusionMatrix: """ A class for calculating and updating a confusion matrix for object detection and classification tasks. Attributes: task (str): The type of task, either 'detect' or 'classify'. matrix (np.array): The confusion matrix, with dimensions depending on the task. nc (int): The number of classes. conf (float): The confidence threshold for detections. iou_thres (float): The Intersection over Union threshold. """ def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'): """Initialize attributes for the YOLO model.""" self.task = task self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc)) self.nc = nc # number of classes self.conf = conf self.iou_thres = iou_thres def process_cls_preds(self, preds, targets): """ Update confusion matrix for classification task Args: preds (Array[N, min(nc,5)]): Predicted class labels. targets (Array[N, 1]): Ground truth class labels. """ preds, targets = torch.cat(preds)[:, 0], torch.cat(targets) for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()): self.matrix[t][p] += 1 def process_batch(self, detections, labels): """ Update confusion matrix for object detection task. Args: detections (Array[N, 6]): Detected bounding boxes and their associated information. Each row should contain (x1, y1, x2, y2, conf, class). labels (Array[M, 5]): Ground truth bounding boxes and their associated class labels. Each row should contain (class, x1, y1, x2, y2). """ if detections is None: gt_classes = labels.int() for gc in gt_classes: self.matrix[self.nc, gc] += 1 # background FN return detections = detections[detections[:, 4] > self.conf] gt_classes = labels[:, 0].int() detection_classes = detections[:, 5].int() iou = box_iou(labels[:, 1:], detections[:, :4]) x = torch.where(iou > self.iou_thres) if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] else: matches = np.zeros((0, 3)) n = matches.shape[0] > 0 m0, m1, _ = matches.transpose().astype(int) for i, gc in enumerate(gt_classes): j = m0 == i if n and sum(j) == 1: self.matrix[detection_classes[m1[j]], gc] += 1 # correct else: self.matrix[self.nc, gc] += 1 # true background if n: for i, dc in enumerate(detection_classes): if not any(m1 == i): self.matrix[dc, self.nc] += 1 # predicted background def matrix(self): """Returns the confusion matrix.""" return self.matrix def tp_fp(self): """Returns true positives and false positives.""" tp = self.matrix.diagonal() # true positives fp = self.matrix.sum(1) - tp # false positives # fn = self.matrix.sum(0) - tp # false negatives (missed detections) return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp) # remove background class if task=detect @TryExcept('WARNING ⚠️ ConfusionMatrix plot failure') @plt_settings() def plot(self, normalize=True, save_dir='', names=()): """ Plot the confusion matrix using seaborn and save it to a file. Args: normalize (bool): Whether to normalize the confusion matrix. save_dir (str): Directory where the plot will be saved. names (tuple): Names of classes, used as labels on the plot. """ import seaborn as sn array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) nc, nn = self.nc, len(names) # number of classes, names sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels ticklabels = (list(names) + ['background']) if labels else 'auto' with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered sn.heatmap( array, ax=ax, annot=nc < 30, annot_kws={ 'size': 8}, cmap='Blues', fmt='.2f' if normalize else '%d', # float if normalize else integer square=True, vmin=0.0, xticklabels=ticklabels, yticklabels=ticklabels).set_facecolor((1, 1, 1)) title = 'Confusion Matrix' + ' Normalized' * normalize ax.set_xlabel('True') ax.set_ylabel('Predicted') ax.set_title(title) fig.savefig(Path(save_dir) / f'{title.lower().replace(" ", "_")}.png', dpi=250) plt.close(fig) def print(self): """ Print the confusion matrix to the console. """ for i in range(self.nc + 1): LOGGER.info(' '.join(map(str, self.matrix[i]))) def smooth(y, f=0.05): """Box filter of fraction f.""" nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) p = np.ones(nf // 2) # ones padding yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed @plt_settings() def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()): """Plots a precision-recall curve.""" fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) py = np.stack(py, axis=1) if 0 < len(names) < 21: # display per-class legend if < 21 classes for i, y in enumerate(py.T): ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) else: ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') ax.set_title('Precision-Recall Curve') fig.savefig(save_dir, dpi=250) plt.close(fig) @plt_settings() def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'): """Plots a metric-confidence curve.""" fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) if 0 < len(names) < 21: # display per-class legend if < 21 classes for i, y in enumerate(py): ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) else: ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) y = smooth(py.mean(0), 0.05) ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') ax.set_title(f'{ylabel}-Confidence Curve') fig.savefig(save_dir, dpi=250) plt.close(fig) def compute_ap(recall, precision): """ Compute the average precision (AP) given the recall and precision curves. Arguments: recall (list): The recall curve. precision (list): The precision curve. Returns: (float): Average precision. (np.ndarray): Precision envelope curve. (np.ndarray): Modified recall curve with sentinel values added at the beginning and end. """ # Append sentinel values to beginning and end mrec = np.concatenate(([0.0], recall, [1.0])) mpre = np.concatenate(([1.0], precision, [0.0])) # Compute the precision envelope mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) # Integrate area under curve method = 'interp' # methods: 'continuous', 'interp' if method == 'interp': x = np.linspace(0, 1, 101) # 101-point interp (COCO) ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate else: # 'continuous' i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve return ap, mpre, mrec def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), names=(), eps=1e-16, prefix=''): """ Computes the average precision per class for object detection evaluation. Args: tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False). conf (np.ndarray): Array of confidence scores of the detections. pred_cls (np.ndarray): Array of predicted classes of the detections. target_cls (np.ndarray): Array of true classes of the detections. plot (bool, optional): Whether to plot PR curves or not. Defaults to False. save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path. names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16. prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string. Returns: (tuple): A tuple of six arrays and one array of unique classes, where: tp (np.ndarray): True positive counts for each class. fp (np.ndarray): False positive counts for each class. p (np.ndarray): Precision values at each confidence threshold. r (np.ndarray): Recall values at each confidence threshold. f1 (np.ndarray): F1-score values at each confidence threshold. ap (np.ndarray): Average precision for each class at different IoU thresholds. unique_classes (np.ndarray): An array of unique classes that have data. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes, nt = np.unique(target_cls, return_counts=True) nc = unique_classes.shape[0] # number of classes, number of detections # Create Precision-Recall curve and compute AP for each class px, py = np.linspace(0, 1, 1000), [] # for plotting ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) for ci, c in enumerate(unique_classes): i = pred_cls == c n_l = nt[ci] # number of labels n_p = i.sum() # number of predictions if n_p == 0 or n_l == 0: continue # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum(0) tpc = tp[i].cumsum(0) # Recall recall = tpc / (n_l + eps) # recall curve r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases # Precision precision = tpc / (tpc + fpc) # precision curve p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score # AP from recall-precision curve for j in range(tp.shape[1]): ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) if plot and j == 0: py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 # Compute F1 (harmonic mean of precision and recall) f1 = 2 * p * r / (p + r + eps) names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data names = dict(enumerate(names)) # to dict if plot: plot_pr_curve(px, py, ap, save_dir / f'{prefix}PR_curve.png', names) plot_mc_curve(px, f1, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1') plot_mc_curve(px, p, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision') plot_mc_curve(px, r, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall') i = smooth(f1.mean(0), 0.1).argmax() # max F1 index p, r, f1 = p[:, i], r[:, i], f1[:, i] tp = (r * nt).round() # true positives fp = (tp / (p + eps) - tp).round() # false positives return tp, fp, p, r, f1, ap, unique_classes.astype(int) class Metric(SimpleClass): """ Class for computing evaluation metrics for YOLOv8 model. Attributes: p (list): Precision for each class. Shape: (nc,). r (list): Recall for each class. Shape: (nc,). f1 (list): F1 score for each class. Shape: (nc,). all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10). ap_class_index (list): Index of class for each AP score. Shape: (nc,). nc (int): Number of classes. Methods: ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or []. ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or []. mp(): Mean precision of all classes. Returns: Float. mr(): Mean recall of all classes. Returns: Float. map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float. map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float. map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float. mean_results(): Mean of results, returns mp, mr, map50, map. class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i]. maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,). fitness(): Model fitness as a weighted combination of metrics. Returns: Float. update(results): Update metric attributes with new evaluation results. """ def __init__(self) -> None: self.p = [] # (nc, ) self.r = [] # (nc, ) self.f1 = [] # (nc, ) self.all_ap = [] # (nc, 10) self.ap_class_index = [] # (nc, ) self.nc = 0 @property def ap50(self): """ Returns the Average Precision (AP) at an IoU threshold of 0.5 for all classes. Returns: (np.ndarray, list): Array of shape (nc,) with AP50 values per class, or an empty list if not available. """ return self.all_ap[:, 0] if len(self.all_ap) else [] @property def ap(self): """ Returns the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes. Returns: (np.ndarray, list): Array of shape (nc,) with AP50-95 values per class, or an empty list if not available. """ return self.all_ap.mean(1) if len(self.all_ap) else [] @property def mp(self): """ Returns the Mean Precision of all classes. Returns: (float): The mean precision of all classes. """ return self.p.mean() if len(self.p) else 0.0 @property def mr(self): """ Returns the Mean Recall of all classes. Returns: (float): The mean recall of all classes. """ return self.r.mean() if len(self.r) else 0.0 @property def map50(self): """ Returns the mean Average Precision (mAP) at an IoU threshold of 0.5. Returns: (float): The mAP50 at an IoU threshold of 0.5. """ return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 @property def map75(self): """ Returns the mean Average Precision (mAP) at an IoU threshold of 0.75. Returns: (float): The mAP50 at an IoU threshold of 0.75. """ return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0 @property def map(self): """ Returns the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05. Returns: (float): The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05. """ return self.all_ap.mean() if len(self.all_ap) else 0.0 def mean_results(self): """Mean of results, return mp, mr, map50, map.""" return [self.mp, self.mr, self.map50, self.map] def class_result(self, i): """class-aware result, return p[i], r[i], ap50[i], ap[i].""" return self.p[i], self.r[i], self.ap50[i], self.ap[i] @property def maps(self): """mAP of each class.""" maps = np.zeros(self.nc) + self.map for i, c in enumerate(self.ap_class_index): maps[c] = self.ap[i] return maps def fitness(self): """Model fitness as a weighted combination of metrics.""" w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] return (np.array(self.mean_results()) * w).sum() def update(self, results): """ Args: results (tuple): A tuple of (p, r, ap, f1, ap_class) """ self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results class DetMetrics(SimpleClass): """ This class is a utility class for computing detection metrics such as precision, recall, and mean average precision (mAP) of an object detection model. Args: save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory. plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False. names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple. Attributes: save_dir (Path): A path to the directory where the output plots will be saved. plot (bool): A flag that indicates whether to plot the precision-recall curves for each class. names (tuple of str): A tuple of strings that represents the names of the classes. box (Metric): An instance of the Metric class for storing the results of the detection metrics. speed (dict): A dictionary for storing the execution time of different parts of the detection process. Methods: process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions. keys: Returns a list of keys for accessing the computed detection metrics. mean_results: Returns a list of mean values for the computed detection metrics. class_result(i): Returns a list of values for the computed detection metrics for a specific class. maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds. fitness: Computes the fitness score based on the computed detection metrics. ap_class_index: Returns a list of class indices sorted by their average precision (AP) values. results_dict: Returns a dictionary that maps detection metric keys to their computed values. """ def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None: self.save_dir = save_dir self.plot = plot self.names = names self.box = Metric() self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} def process(self, tp, conf, pred_cls, target_cls): """Process predicted results for object detection and update metrics.""" results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names)[2:] self.box.nc = len(self.names) self.box.update(results) @property def keys(self): """Returns a list of keys for accessing specific metrics.""" return ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)'] def mean_results(self): """Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.""" return self.box.mean_results() def class_result(self, i): """Return the result of evaluating the performance of an object detection model on a specific class.""" return self.box.class_result(i) @property def maps(self): """Returns mean Average Precision (mAP) scores per class.""" return self.box.maps @property def fitness(self): """Returns the fitness of box object.""" return self.box.fitness() @property def ap_class_index(self): """Returns the average precision index per class.""" return self.box.ap_class_index @property def results_dict(self): """Returns dictionary of computed performance metrics and statistics.""" return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness])) class SegmentMetrics(SimpleClass): """ Calculates and aggregates detection and segmentation metrics over a given set of classes. Args: save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory. plot (bool): Whether to save the detection and segmentation plots. Default is False. names (list): List of class names. Default is an empty list. Attributes: save_dir (Path): Path to the directory where the output plots should be saved. plot (bool): Whether to save the detection and segmentation plots. names (list): List of class names. box (Metric): An instance of the Metric class to calculate box detection metrics. seg (Metric): An instance of the Metric class to calculate mask segmentation metrics. speed (dict): Dictionary to store the time taken in different phases of inference. Methods: process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions. mean_results(): Returns the mean of the detection and segmentation metrics over all the classes. class_result(i): Returns the detection and segmentation metrics of class `i`. maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95. fitness: Returns the fitness scores, which are a single weighted combination of metrics. ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP). results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score. """ def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None: self.save_dir = save_dir self.plot = plot self.names = names self.box = Metric() self.seg = Metric() self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} def process(self, tp_b, tp_m, conf, pred_cls, target_cls): """ Processes the detection and segmentation metrics over the given set of predictions. Args: tp_b (list): List of True Positive boxes. tp_m (list): List of True Positive masks. conf (list): List of confidence scores. pred_cls (list): List of predicted classes. target_cls (list): List of target classes. """ results_mask = ap_per_class(tp_m, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names, prefix='Mask')[2:] self.seg.nc = len(self.names) self.seg.update(results_mask) results_box = ap_per_class(tp_b, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names, prefix='Box')[2:] self.box.nc = len(self.names) self.box.update(results_box) @property def keys(self): """Returns a list of keys for accessing metrics.""" return [ 'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)', 'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)'] def mean_results(self): """Return the mean metrics for bounding box and segmentation results.""" return self.box.mean_results() + self.seg.mean_results() def class_result(self, i): """Returns classification results for a specified class index.""" return self.box.class_result(i) + self.seg.class_result(i) @property def maps(self): """Returns mAP scores for object detection and semantic segmentation models.""" return self.box.maps + self.seg.maps @property def fitness(self): """Get the fitness score for both segmentation and bounding box models.""" return self.seg.fitness() + self.box.fitness() @property def ap_class_index(self): """Boxes and masks have the same ap_class_index.""" return self.box.ap_class_index @property def results_dict(self): """Returns results of object detection model for evaluation.""" return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness])) class PoseMetrics(SegmentMetrics): """ Calculates and aggregates detection and pose metrics over a given set of classes. Args: save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory. plot (bool): Whether to save the detection and segmentation plots. Default is False. names (list): List of class names. Default is an empty list. Attributes: save_dir (Path): Path to the directory where the output plots should be saved. plot (bool): Whether to save the detection and segmentation plots. names (list): List of class names. box (Metric): An instance of the Metric class to calculate box detection metrics. pose (Metric): An instance of the Metric class to calculate mask segmentation metrics. speed (dict): Dictionary to store the time taken in different phases of inference. Methods: process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions. mean_results(): Returns the mean of the detection and segmentation metrics over all the classes. class_result(i): Returns the detection and segmentation metrics of class `i`. maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95. fitness: Returns the fitness scores, which are a single weighted combination of metrics. ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP). results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score. """ def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None: super().__init__(save_dir, plot, names) self.save_dir = save_dir self.plot = plot self.names = names self.box = Metric() self.pose = Metric() self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} def __getattr__(self, attr): """Raises an AttributeError if an invalid attribute is accessed.""" name = self.__class__.__name__ raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") def process(self, tp_b, tp_p, conf, pred_cls, target_cls): """ Processes the detection and pose metrics over the given set of predictions. Args: tp_b (list): List of True Positive boxes. tp_p (list): List of True Positive keypoints. conf (list): List of confidence scores. pred_cls (list): List of predicted classes. target_cls (list): List of target classes. """ results_pose = ap_per_class(tp_p, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names, prefix='Pose')[2:] self.pose.nc = len(self.names) self.pose.update(results_pose) results_box = ap_per_class(tp_b, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names, prefix='Box')[2:] self.box.nc = len(self.names) self.box.update(results_box) @property def keys(self): """Returns list of evaluation metric keys.""" return [ 'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)', 'metrics/precision(P)', 'metrics/recall(P)', 'metrics/mAP50(P)', 'metrics/mAP50-95(P)'] def mean_results(self): """Return the mean results of box and pose.""" return self.box.mean_results() + self.pose.mean_results() def class_result(self, i): """Return the class-wise detection results for a specific class i.""" return self.box.class_result(i) + self.pose.class_result(i) @property def maps(self): """Returns the mean average precision (mAP) per class for both box and pose detections.""" return self.box.maps + self.pose.maps @property def fitness(self): """Computes classification metrics and speed using the `targets` and `pred` inputs.""" return self.pose.fitness() + self.box.fitness() class ClassifyMetrics(SimpleClass): """ Class for computing classification metrics including top-1 and top-5 accuracy. Attributes: top1 (float): The top-1 accuracy. top5 (float): The top-5 accuracy. speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline. Properties: fitness (float): The fitness of the model, which is equal to top-5 accuracy. results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness. keys (List[str]): A list of keys for the results_dict. Methods: process(targets, pred): Processes the targets and predictions to compute classification metrics. """ def __init__(self) -> None: self.top1 = 0 self.top5 = 0 self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} def process(self, targets, pred): """Target classes and predicted classes.""" pred, targets = torch.cat(pred), torch.cat(targets) correct = (targets[:, None] == pred).float() acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy self.top1, self.top5 = acc.mean(0).tolist() @property def fitness(self): """Returns top-5 accuracy as fitness score.""" return self.top5 @property def results_dict(self): """Returns a dictionary with model's performance metrics and fitness score.""" return dict(zip(self.keys + ['fitness'], [self.top1, self.top5, self.fitness])) @property def keys(self): """Returns a list of keys for the results_dict property.""" return ['metrics/accuracy_top1', 'metrics/accuracy_top5']