[![Ultralytics CI](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg)](https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml) ### Install ```bash pip install ultralytics ``` Development ``` git clone https://github.com/ultralytics/ultralytics cd ultralytics pip install -e . ``` ## Usage ### 1. CLI To simply use the latest Ultralytics YOLO models ```bash yolo task=detect mode=train model=yolov8n.yaml args=... classify predict yolov8n-cls.yaml args=... segment val yolov8n-seg.yaml args=... export yolov8n.pt format=onnx ``` ### 2. Python SDK To use pythonic interface of Ultralytics YOLO model ```python from ultralytics import YOLO model = YOLO("yolov8n.yaml") # create a new model from scratch model = YOLO( "yolov8n.pt" ) # load a pretrained model (recommended for best training results) results = model.train(data="coco128.yaml", epochs=100, imgsz=640, ...) results = model.val() results = model.predict(source="bus.jpg") success = model.export(format="onnx") ``` If you're looking to modify YOLO for R&D or to build on top of it, refer to [Using Trainer](<>) Guide on our docs.