--- comments: true description: Get started with YOLOv5 in a Docker container. Learn to set up and run YOLOv5 models and explore other quickstart options. 🚀 keywords: YOLOv5, Docker, tutorial, setup, training, testing, detection --- # Get Started with YOLOv5 🚀 in Docker This tutorial will guide you through the process of setting up and running YOLOv5 in a Docker container. You can also explore other quickstart options for YOLOv5, such as our [Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb) , [GCP Deep Learning VM](https://docs.ultralytics.com/yolov5/environments/google_cloud_quickstart_tutorial), and [Amazon AWS](https://docs.ultralytics.com/yolov5/environments/aws_quickstart_tutorial). *Updated: 21 April 2023*. ## Prerequisites 1. **Nvidia Driver**: Version 455.23 or higher. Download from [Nvidia's website](https://www.nvidia.com/Download/index.aspx). 2. **Nvidia-Docker**: Allows Docker to interact with your local GPU. Installation instructions are available on the [Nvidia-Docker GitHub repository](https://github.com/NVIDIA/nvidia-docker). 3. **Docker Engine - CE**: Version 19.03 or higher. Download and installation instructions can be found on the [Docker website](https://docs.docker.com/install/). ## Step 1: Pull the YOLOv5 Docker Image The Ultralytics YOLOv5 DockerHub repository is available at [https://hub.docker.com/r/ultralytics/yolov5](https://hub.docker.com/r/ultralytics/yolov5). Docker Autobuild ensures that the `ultralytics/yolov5:latest` image is always in sync with the most recent repository commit. To pull the latest image, run the following command: ```bash sudo docker pull ultralytics/yolov5:latest ``` ## Step 2: Run the Docker Container ### Basic container: Run an interactive instance of the YOLOv5 Docker image (called a "container") using the `-it` flag: ```bash sudo docker run --ipc=host -it ultralytics/yolov5:latest ``` ### Container with local file access: To run a container with access to local files (e.g., COCO training data in `/datasets`), use the `-v` flag: ```bash sudo docker run --ipc=host -it -v "$(pwd)"/datasets:/usr/src/datasets ultralytics/yolov5:latest ``` ### Container with GPU access: To run a container with GPU access, use the `--gpus all` flag: ```bash sudo docker run --ipc=host -it --gpus all ultralytics/yolov5:latest ``` ## Step 3: Use YOLOv5 🚀 within the Docker Container Now you can train, test, detect, and export YOLOv5 models within the running Docker container: ```bash python train.py # train a model python val.py --weights yolov5s.pt # validate a model for Precision, Recall, and mAP python detect.py --weights yolov5s.pt --source path/to/images # run inference on images and videos python export.py --weights yolov5s.pt --include onnx coreml tflite # export models to other formats ```