from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params try: import clearml from clearml import Task assert hasattr(clearml, '__version__') except (ImportError, AssertionError): clearml = None def _log_scalers(metric_dict, group="", step=0): task = Task.current_task() if task: for k, v in metric_dict.items(): task.get_logger().report_scalar(group, k, v, step) def before_train(trainer): # TODO: reuse existing task task = Task.init(project_name=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv5', task_name=trainer.args.name if trainer.args.name != 'exp' else 'Training', tags=['YOLOv5'], output_uri=True, reuse_last_task_id=False, auto_connect_frameworks={'pytorch': False}) task.connect(trainer.args, name='parameters') def on_batch_end(trainer): train_loss = trainer.tloss _log_scalers(trainer.label_loss_items(train_loss), "train", trainer.epoch) def on_val_end(trainer): metrics = trainer.metrics val_losses = trainer.validator.loss val_loss_dict = trainer.label_loss_items(val_losses) _log_scalers(val_loss_dict, "val", trainer.epoch) _log_scalers(metrics, "metrics", trainer.epoch) if trainer.epoch == 0: infer_speed = trainer.validator.speed[1] model_info = { "inference_speed": infer_speed, "flops@640": get_flops(trainer.model), "params": get_num_params(trainer.model)} _log_scalers(model_info, "model") def on_train_end(trainer): task = Task.current_task() if task: task.update_output_model(model_path=str(trainer.best), model_name='Best Model', auto_delete_file=False) callbacks = { "before_train": before_train, "on_val_end": on_val_end, "on_batch_end": on_batch_end, "on_train_end": on_train_end}