---
description: Explore Ultralytics YOLO metrics tools - from confusion matrix, detection metrics, pose metrics to box IOU. Learn how to compute and plot precision-recall curves.
keywords: Ultralytics, YOLO, YOLOv3, YOLOv4, metrics, confusion matrix, detection metrics, pose metrics, box IOU, mask IOU, plot precision-recall curves, compute average precision
---
# Reference for `ultralytics/utils/metrics.py`
!!! note
Full source code for this file is available at [https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/metrics.py](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/metrics.py).
---
## ::: ultralytics.utils.metrics.ConfusionMatrix
---
## ::: ultralytics.utils.metrics.Metric
---
## ::: ultralytics.utils.metrics.DetMetrics
---
## ::: ultralytics.utils.metrics.SegmentMetrics
---
## ::: ultralytics.utils.metrics.PoseMetrics
---
## ::: ultralytics.utils.metrics.ClassifyMetrics
---
## ::: ultralytics.utils.metrics.box_area
---
## ::: ultralytics.utils.metrics.bbox_ioa
---
## ::: ultralytics.utils.metrics.box_iou
---
## ::: ultralytics.utils.metrics.bbox_iou
---
## ::: ultralytics.utils.metrics.mask_iou
---
## ::: ultralytics.utils.metrics.kpt_iou
---
## ::: ultralytics.utils.metrics.smooth_BCE
---
## ::: ultralytics.utils.metrics.smooth
---
## ::: ultralytics.utils.metrics.plot_pr_curve
---
## ::: ultralytics.utils.metrics.plot_mc_curve
---
## ::: ultralytics.utils.metrics.compute_ap
---
## ::: ultralytics.utils.metrics.ap_per_class