import hydra import torch from ultralytics.yolo.data import build_classification_dataloader from ultralytics.yolo.engine.trainer import DEFAULT_CONFIG from ultralytics.yolo.engine.validator import BaseValidator class ClassificationValidator(BaseValidator): def init_metrics(self, model): self.correct = torch.tensor([], device=next(model.parameters()).device) def preprocess(self, batch): batch["img"] = batch["img"].to(self.device, non_blocking=True) batch["img"] = batch["img"].half() if self.args.half else batch["img"].float() batch["cls"] = batch["cls"].to(self.device) return batch def update_metrics(self, preds, batch): targets = batch["cls"] correct_in_batch = (targets[:, None] == preds).float() self.correct = torch.cat((self.correct, correct_in_batch)) def get_stats(self): acc = torch.stack((self.correct[:, 0], self.correct.max(1).values), dim=1) # (top1, top5) accuracy top1, top5 = acc.mean(0).tolist() return {"top1": top1, "top5": top5, "fitness": top5} def get_dataloader(self, dataset_path, batch_size): return build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size) @property def metric_keys(self): return ["top1", "top5"] @hydra.main(version_base=None, config_path=DEFAULT_CONFIG.parent, config_name=DEFAULT_CONFIG.name) def val(cfg): cfg.data = cfg.data or "imagenette160" cfg.model = cfg.model or "resnet18" validator = ClassificationValidator(args=cfg) validator(model=cfg.model) if __name__ == "__main__": val()