import contextlib import math import re import time import cv2 import numpy as np import torch import torch.nn.functional as F import torchvision from ultralytics.yolo.utils import LOGGER from .metrics import box_iou class Profile(contextlib.ContextDecorator): # YOLOv5 Profile class. Usage: @Profile() decorator or 'with Profile():' context manager def __init__(self, t=0.0): self.t = t self.cuda = torch.cuda.is_available() def __enter__(self): self.start = self.time() return self def __exit__(self, type, value, traceback): self.dt = self.time() - self.start # delta-time self.t += self.dt # accumulate dt def time(self): if self.cuda: torch.cuda.synchronize() return time.time() def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet return [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] def segment2box(segment, width=640, height=640): # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) x, y = segment.T # segment xy inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) x, y, = x[inside], y[inside] return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros(4) # xyxy def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None): # Rescale boxes (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] boxes[:, [0, 2]] -= pad[0] # x padding boxes[:, [1, 3]] -= pad[1] # y padding boxes[:, :4] /= gain clip_boxes(boxes, img0_shape) return boxes def clip_boxes(boxes, shape): # Clip boxes (xyxy) to image shape (height, width) if isinstance(boxes, torch.Tensor): # faster individually boxes[:, 0].clamp_(0, shape[1]) # x1 boxes[:, 1].clamp_(0, shape[0]) # y1 boxes[:, 2].clamp_(0, shape[1]) # x2 boxes[:, 3].clamp_(0, shape[0]) # y2 else: # np.array (faster grouped) boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 def make_divisible(x, divisor): # Returns nearest x divisible by divisor if isinstance(divisor, torch.Tensor): divisor = int(divisor.max()) # to int return math.ceil(x / divisor) * divisor def non_max_suppression( prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, labels=(), max_det=300, nm=0, # number of masks ): """Non-Maximum Suppression (NMS) on inference results to reject overlapping detections Returns: list of detections, on (n,6) tensor per image [xyxy, conf, cls] """ if isinstance(prediction, (list, tuple)): # YOLOv5 model in validation model, output = (inference_out, loss_out) prediction = prediction[0] # select only inference output device = prediction.device mps = 'mps' in device.type # Apple MPS if mps: # MPS not fully supported yet, convert tensors to CPU before NMS prediction = prediction.cpu() bs = prediction.shape[0] # batch size nc = prediction.shape[2] - nm - 5 # number of classes xc = prediction[..., 4] > conf_thres # candidates # Checks assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' # Settings # min_wh = 2 # (pixels) minimum box width and height max_wh = 7680 # (pixels) maximum box width and height max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() time_limit = 0.5 + 0.05 * bs # seconds to quit after redundant = True # require redundant detections multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) merge = False # use merge-NMS t = time.time() mi = 5 + nc # mask start index output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence # Cat apriori labels if autolabelling if labels and len(labels[xi]): lb = labels[xi] v = torch.zeros((len(lb), nc + nm + 5), device=x.device) v[:, :4] = lb[:, 1:5] # box v[:, 4] = 1.0 # conf v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls x = torch.cat((x, v), 0) # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box/Mask box = xywh2xyxy(x[:, :4]) # center_x, center_y, width, height) to (x1, y1, x2, y2) mask = x[:, mi:] # zero columns if no masks # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1) else: # best class only conf, j = x[:, 5:mi].max(1, keepdim=True) x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres] # Filter by class if classes is not None: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # Check shape n = x.shape[0] # number of boxes if not n: # no boxes continue elif n > max_nms: # excess boxes x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence else: x = x[x[:, 4].argsort(descending=True)] # sort by confidence # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy output[xi] = x[i] if mps: output[xi] = output[xi].to(device) if (time.time() - t) > time_limit: LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded') break # time limit exceeded return output def clip_coords(boxes, shape): # Clip bounding xyxy bounding boxes to image shape (height, width) if isinstance(boxes, torch.Tensor): # faster individually boxes[:, 0].clamp_(0, shape[1]) # x1 boxes[:, 1].clamp_(0, shape[0]) # y1 boxes[:, 2].clamp_(0, shape[1]) # x2 boxes[:, 3].clamp_(0, shape[0]) # y2 else: # np.array (faster grouped) boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 def scale_image(im1_shape, masks, im0_shape, ratio_pad=None): """ img1_shape: model input shape, [h, w] img0_shape: origin pic shape, [h, w, 3] masks: [h, w, num] """ # Rescale coordinates (xyxy) from im1_shape to im0_shape if ratio_pad is None: # calculate from im0_shape gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding else: pad = ratio_pad[1] top, left = int(pad[1]), int(pad[0]) # y, x bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0]) if len(masks.shape) < 2: raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}') masks = masks[top:bottom, left:right] # masks = masks.permute(2, 0, 1).contiguous() # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0] # masks = masks.permute(1, 2, 0).contiguous() masks = cv2.resize(masks, (im0_shape[1], im0_shape[0])) if len(masks.shape) == 2: masks = masks[:, :, None] return masks def xyxy2xywh(x): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def xywh2ltwh(x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, w, h] where xy1=top-left y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y return y def xyxy2ltwh(x): # Convert nx4 boxes from [x1, y1, x2, y2] to [x1, y1, w, h] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def ltwh2xywh(x): # Convert nx4 boxes from [x1, y1, w, h] to [x, y, w, h] where xy1=top-left, xy=center y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = x[:, 0] + x[:, 2] / 2 # center x y[:, 1] = x[:, 1] + x[:, 3] / 2 # center y return y def ltwh2xyxy(x): # Convert nx4 boxes from [x1, y1, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 2] = x[:, 2] + x[:, 0] # width y[:, 3] = x[:, 3] + x[:, 1] # height return y def segments2boxes(segments): # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) boxes = [] for s in segments: x, y = s.T # segment xy boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy return xyxy2xywh(np.array(boxes)) # cls, xywh def resample_segments(segments, n=1000): # Up-sample an (n,2) segment for i, s in enumerate(segments): s = np.concatenate((s, s[0:1, :]), axis=0) x = np.linspace(0, len(s) - 1, n) xp = np.arange(len(s)) segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy return segments def crop_mask(masks, boxes): """ "Crop" predicted masks by zeroing out everything not in the predicted bbox. Vectorized by Chong (thanks Chong). Args: - masks should be a size [h, w, n] tensor of masks - boxes should be a size [n, 4] tensor of bbox coords in relative point form """ n, h, w = masks.shape x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n) r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1) c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1) return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) def process_mask_upsample(protos, masks_in, bboxes, shape): """ Crop after upsample. proto_out: [mask_dim, mask_h, mask_w] out_masks: [n, mask_dim], n is number of masks after nms bboxes: [n, 4], n is number of masks after nms shape:input_image_size, (h, w) return: h, w, n """ c, mh, mw = protos.shape # CHW masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW masks = crop_mask(masks, bboxes) # CHW return masks.gt_(0.5) def process_mask(protos, masks_in, bboxes, shape, upsample=False): """ Crop before upsample. proto_out: [mask_dim, mask_h, mask_w] out_masks: [n, mask_dim], n is number of masks after nms bboxes: [n, 4], n is number of masks after nms shape:input_image_size, (h, w) return: h, w, n """ c, mh, mw = protos.shape # CHW ih, iw = shape masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW downsampled_bboxes = bboxes.clone() downsampled_bboxes[:, 0] *= mw / iw downsampled_bboxes[:, 2] *= mw / iw downsampled_bboxes[:, 3] *= mh / ih downsampled_bboxes[:, 1] *= mh / ih masks = crop_mask(masks, downsampled_bboxes) # CHW if upsample: masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW return masks.gt_(0.5) def process_mask_native(protos, masks_in, bboxes, shape): """ Crop after upsample. protos: [mask_dim, mask_h, mask_w] masks_in: [n, mask_dim], n is number of masks after nms bboxes: [n, 4], n is number of masks after nms shape: input_image_size, (h, w) return: h, w, n """ c, mh, mw = protos.shape # CHW masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) gain = min(mh / shape[0], mw / shape[1]) # gain = old / new pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding top, left = int(pad[1]), int(pad[0]) # y, x bottom, right = int(mh - pad[1]), int(mw - pad[0]) masks = masks[:, top:bottom, left:right] masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW masks = crop_mask(masks, bboxes) # CHW return masks.gt_(0.5) def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] segments[:, 0] -= pad[0] # x padding segments[:, 1] -= pad[1] # y padding segments /= gain clip_segments(segments, img0_shape) if normalize: segments[:, 0] /= img0_shape[1] # width segments[:, 1] /= img0_shape[0] # height return segments def masks2segments(masks, strategy='largest'): # Convert masks(n,160,160) into segments(n,xy) segments = [] for x in masks.int().cpu().numpy().astype('uint8'): c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] if c: if strategy == 'concat': # concatenate all segments c = np.concatenate([x.reshape(-1, 2) for x in c]) elif strategy == 'largest': # select largest segment c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2) else: c = np.zeros((0, 2)) # no segments found segments.append(c.astype('float32')) return segments def clip_segments(segments, shape): # Clip segments (xy1,xy2,...) to image shape (height, width) if isinstance(segments, torch.Tensor): # faster individually segments[:, 0].clamp_(0, shape[1]) # x segments[:, 1].clamp_(0, shape[0]) # y else: # np.array (faster grouped) segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y def clean_str(s): # Cleans a string by replacing special characters with underscore _ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)