import torch from ultralytics.yolo import YOLO def test_model_forward(): model = YOLO() model.new("yolov5n-seg.yaml") img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512) model.forward(img) model(img) def test_model_info(): model = YOLO() model.new("yolov5n.yaml") model.info() model.load("balloon-detect.pt") model.info(verbose=True) def test_model_fuse(): model = YOLO() model.new("yolov5n.yaml") model.fuse() model.load("balloon-detect.pt") model.fuse() def test_visualize_preds(): model = YOLO() model.load("balloon-segment.pt") model.predict(source="ultralytics/assets") def test_val(): model = YOLO() model.load("balloon-segment.pt") model.val(data="coco128-seg.yaml", imgsz=32) def test_model_resume(): model = YOLO() model.new("yolov5n-seg.yaml") model.train(epochs=1, imgsz=32, data="coco128-seg.yaml") try: model.resume(task="segment") except AssertionError: print("Successfully caught resume assert!") def test_model_train_pretrained(): model = YOLO() model.load("balloon-detect.pt") model.train(data="coco128.yaml", epochs=1, imgsz=32) model.new("yolov5n.yaml") model.train(data="coco128.yaml", epochs=1, imgsz=32) img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512) model(img) def test(): test_model_forward() test_model_info() test_model_fuse() test_visualize_preds() test_val() test_model_resume() test_model_train_pretrained() if __name__ == "__main__": test()