# Ultralytics YOLO 🚀, AGPL-3.0 license # Builds ultralytics/ultralytics:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics # Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv8 deployments # Start FROM Ubuntu image https://hub.docker.com/_/ubuntu FROM ubuntu:rolling # Downloads to user config dir ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ # Install linux packages # g++ required to build 'tflite_support' package RUN apt update \ && apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg g++ # RUN alias python=python3 # Create working directory RUN mkdir -p /usr/src/ultralytics WORKDIR /usr/src/ultralytics # Copy contents # COPY . /usr/src/app (issues as not a .git directory) RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/ # Install pip packages RUN python3 -m pip install --upgrade pip wheel RUN pip install --no-cache . albumentations gsutil notebook tensorboard \ --extra-index-url https://download.pytorch.org/whl/cpu # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/ultralytics:latest-cpu && sudo docker build -f docker/Dockerfile-cpu -t $t . && sudo docker push $t # Pull and Run # t=ultralytics/ultralytics:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t