# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params try: import wandb as wb assert hasattr(wb, '__version__') except (ImportError, AssertionError): wb = None def on_pretrain_routine_start(trainer): wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars( trainer.args)) if not wb.run else wb.run def on_fit_epoch_end(trainer): wb.run.log(trainer.metrics, step=trainer.epoch + 1) if trainer.epoch == 0: model_info = { 'model/parameters': get_num_params(trainer.model), 'model/GFLOPs': round(get_flops(trainer.model), 3), 'model/speed(ms)': round(trainer.validator.speed['inference'], 3)} wb.run.log(model_info, step=trainer.epoch + 1) def on_train_epoch_end(trainer): wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1) wb.run.log(trainer.lr, step=trainer.epoch + 1) if trainer.epoch == 1: wb.run.log({f.stem: wb.Image(str(f)) for f in trainer.save_dir.glob('train_batch*.jpg')}, step=trainer.epoch + 1) def on_train_end(trainer): art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model') if trainer.best.exists(): art.add_file(trainer.best) wb.run.log_artifact(art) callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_train_epoch_end': on_train_epoch_end, 'on_fit_epoch_end': on_fit_epoch_end, 'on_train_end': on_train_end} if wb else {}