# Ultralytics YOLO 🚀, GPL-3.0 license from ultralytics import YOLO from ultralytics.yolo.configs import get_config from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT from ultralytics.yolo.v8 import classify, detect, segment CFG_DET = 'yolov8n.yaml' CFG_SEG = 'yolov8n-seg.yaml' CFG_CLS = 'squeezenet1_0' CFG = get_config(DEFAULT_CONFIG) SOURCE = ROOT / "assets" def test_detect(): overrides = {"data": "coco128.yaml", "model": CFG_DET, "imgsz": 32, "epochs": 1, "save": False} CFG.data = "coco128.yaml" # trainer trainer = detect.DetectionTrainer(overrides=overrides) trainer.train() trained_model = trainer.best # Validator val = detect.DetectionValidator(args=CFG) val(model=trained_model) # predictor pred = detect.DetectionPredictor(overrides={"imgsz": [640, 640]}) p = pred(source=SOURCE, model="yolov8n.pt") assert len(p) == 2, "predictor test failed" overrides["resume"] = trainer.last trainer = detect.DetectionTrainer(overrides=overrides) try: trainer.train() except Exception as e: print(f"Expected exception caught: {e}") return Exception("Resume test failed!") def test_segment(): overrides = {"data": "coco128-seg.yaml", "model": CFG_SEG, "imgsz": 32, "epochs": 1, "save": False} CFG.data = "coco128-seg.yaml" CFG.v5loader = False # YOLO(CFG_SEG).train(**overrides) # This works # trainer trainer = segment.SegmentationTrainer(overrides=overrides) trainer.train() trained_model = trainer.best # Validator val = segment.SegmentationValidator(args=CFG) val(model=trained_model) # predictor pred = segment.SegmentationPredictor(overrides={"imgsz": [640, 640]}) p = pred(source=SOURCE, model="yolov8n-seg.pt") assert len(p) == 2, "predictor test failed" # test resume overrides["resume"] = trainer.last trainer = segment.SegmentationTrainer(overrides=overrides) try: trainer.train() except Exception as e: print(f"Expected exception caught: {e}") return Exception("Resume test failed!") def test_classify(): overrides = { "data": "imagenette160", "model": "yolov8n-cls.yaml", "imgsz": 32, "epochs": 1, "batch": 64, "save": False} CFG.data = "imagenette160" CFG.imgsz = 32 CFG.batch = 64 # YOLO(CFG_SEG).train(**overrides) # This works # trainer trainer = classify.ClassificationTrainer(overrides=overrides) trainer.train() trained_model = trainer.best # Validator val = classify.ClassificationValidator(args=CFG) val(model=trained_model) # predictor pred = classify.ClassificationPredictor(overrides={"imgsz": [640, 640]}) p = pred(source=SOURCE, model=trained_model) assert len(p) == 2, "Predictor test failed!"