# Ultralytics YOLO 🚀, GPL-3.0 license from ultralytics.yolo.engine.results import Results from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops from ultralytics.yolo.v8.detect.predict import DetectionPredictor class PosePredictor(DetectionPredictor): def postprocess(self, preds, img, orig_img): preds = ops.non_max_suppression(preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, classes=self.args.classes, nc=len(self.model.names)) results = [] for i, pred in enumerate(preds): orig_img = orig_img[i] if isinstance(orig_img, list) else orig_img shape = orig_img.shape pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:] pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape) path, _, _, _, _ = self.batch img_path = path[i] if isinstance(path, list) else path results.append( Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts)) return results def predict(cfg=DEFAULT_CFG, use_python=False): model = cfg.model or 'yolov8n-pose.pt' source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ else 'https://ultralytics.com/images/bus.jpg' args = dict(model=model, source=source) if use_python: from ultralytics import YOLO YOLO(model)(**args) else: predictor = PosePredictor(overrides=args) predictor.predict_cli() if __name__ == '__main__': predict()