# Ultralytics YOLO 🚀, GPL-3.0 license """ Model validation metrics """ import math import warnings from pathlib import Path import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn from ultralytics.yolo.utils import LOGGER, SimpleClass, TryExcept, plt_settings OKS_SIGMA = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 # boxes def box_area(box): # box = xyxy(4,n) return (box[2] - box[0]) * (box[3] - box[1]) def bbox_ioa(box1, box2, eps=1e-7): """Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2 box1: np.array of shape(nx4) box2: np.array of shape(mx4) returns: np.array of shape(nxm) """ # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1.T b2_x1, b2_y1, b2_x2, b2_y2 = box2.T # Intersection area inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \ (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0) # box2 area box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps # Intersection over box2 area return inter_area / box2_area def box_iou(box1, box2, eps=1e-7): """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Based on https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) eps Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2) inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2) # IoU = inter / (area1 + area2 - inter) return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps) def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4) # Get the coordinates of bounding boxes if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ else: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps # Intersection area inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \ (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0) # Union Area union = w1 * h1 + w2 * h2 - inter + eps # IoU iou = inter / union if CIoU or DIoU or GIoU: cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf return iou # IoU def mask_iou(mask1, mask2, eps=1e-7): """ mask1: [N, n] m1 means number of gt objects mask2: [M, n] m2 means number of predicted objects Note: n means image_w x image_h Returns: masks iou, [N, M] """ intersection = torch.matmul(mask1, mask2.t()).clamp(0) union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection return intersection / (union + eps) def kpt_iou(kpt1, kpt2, area, sigma, eps=1e-7): """OKS kpt1: [N, 17, 3], gt kpt2: [M, 17, 3], pred area: [N], areas from gt """ d = (kpt1[:, None, :, 0] - kpt2[..., 0]) ** 2 + (kpt1[:, None, :, 1] - kpt2[..., 1]) ** 2 # (N, M, 17) sigma = torch.tensor(sigma, device=kpt1.device, dtype=kpt1.dtype) # (17, ) kpt_mask = kpt1[..., 2] != 0 # (N, 17) e = d / (2 * sigma) ** 2 / (area[:, None, None] + eps) / 2 # from cocoeval # e = d / ((area[None, :, None] + eps) * sigma) ** 2 / 2 # from formula return (torch.exp(-e) * kpt_mask[:, None]).sum(-1) / (kpt_mask.sum(-1)[:, None] + eps) def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps # losses class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super().__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class ConfusionMatrix: # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix def __init__(self, nc, conf=0.25, iou_thres=0.45, task='detect'): self.task = task self.matrix = np.zeros((nc + 1, nc + 1)) if self.task == 'detect' else np.zeros((nc, nc)) self.nc = nc # number of classes self.conf = conf self.iou_thres = iou_thres def process_cls_preds(self, preds, targets): """ Update confusion matrix for classification task Arguments: preds (Array[N, min(nc,5)]) targets (Array[N, 1]) Returns: None, updates confusion matrix accordingly """ preds, targets = torch.cat(preds)[:, 0], torch.cat(targets) for p, t in zip(preds.cpu().numpy(), targets.cpu().numpy()): self.matrix[t][p] += 1 def process_batch(self, detections, labels): """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: None, updates confusion matrix accordingly """ if detections is None: gt_classes = labels.int() for gc in gt_classes: self.matrix[self.nc, gc] += 1 # background FN return detections = detections[detections[:, 4] > self.conf] gt_classes = labels[:, 0].int() detection_classes = detections[:, 5].int() iou = box_iou(labels[:, 1:], detections[:, :4]) x = torch.where(iou > self.iou_thres) if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] else: matches = np.zeros((0, 3)) n = matches.shape[0] > 0 m0, m1, _ = matches.transpose().astype(int) for i, gc in enumerate(gt_classes): j = m0 == i if n and sum(j) == 1: self.matrix[detection_classes[m1[j]], gc] += 1 # correct else: self.matrix[self.nc, gc] += 1 # true background if n: for i, dc in enumerate(detection_classes): if not any(m1 == i): self.matrix[dc, self.nc] += 1 # predicted background def matrix(self): return self.matrix def tp_fp(self): tp = self.matrix.diagonal() # true positives fp = self.matrix.sum(1) - tp # false positives # fn = self.matrix.sum(0) - tp # false negatives (missed detections) return (tp[:-1], fp[:-1]) if self.task == 'detect' else (tp, fp) # remove background class if task=detect @TryExcept('WARNING ⚠️ ConfusionMatrix plot failure') @plt_settings() def plot(self, normalize=True, save_dir='', names=()): import seaborn as sn array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) nc, nn = self.nc, len(names) # number of classes, names sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels ticklabels = (names + ['background']) if labels else 'auto' with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered sn.heatmap(array, ax=ax, annot=nc < 30, annot_kws={ 'size': 8}, cmap='Blues', fmt='.2f', square=True, vmin=0.0, xticklabels=ticklabels, yticklabels=ticklabels).set_facecolor((1, 1, 1)) ax.set_xlabel('True') ax.set_ylabel('Predicted') ax.set_title('Confusion Matrix') fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) plt.close(fig) def print(self): for i in range(self.nc + 1): LOGGER.info(' '.join(map(str, self.matrix[i]))) def smooth(y, f=0.05): # Box filter of fraction f nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) p = np.ones(nf // 2) # ones padding yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed @plt_settings() def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()): # Precision-recall curve fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) py = np.stack(py, axis=1) if 0 < len(names) < 21: # display per-class legend if < 21 classes for i, y in enumerate(py.T): ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) else: ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') ax.set_title('Precision-Recall Curve') fig.savefig(save_dir, dpi=250) plt.close(fig) @plt_settings() def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'): # Metric-confidence curve fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) if 0 < len(names) < 21: # display per-class legend if < 21 classes for i, y in enumerate(py): ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) else: ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) y = smooth(py.mean(0), 0.05) ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.legend(bbox_to_anchor=(1.04, 1), loc='upper left') ax.set_title(f'{ylabel}-Confidence Curve') fig.savefig(save_dir, dpi=250) plt.close(fig) def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves Arguments: recall: The recall curve (list) precision: The precision curve (list) Returns: Average precision, precision curve, recall curve """ # Append sentinel values to beginning and end mrec = np.concatenate(([0.0], recall, [1.0])) mpre = np.concatenate(([1.0], precision, [0.0])) # Compute the precision envelope mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) # Integrate area under curve method = 'interp' # methods: 'continuous', 'interp' if method == 'interp': x = np.linspace(0, 1, 101) # 101-point interp (COCO) ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate else: # 'continuous' i = np.where(mrec[1:] != mrec[:-1])[0] # points where x-axis (recall) changes ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve return ap, mpre, mrec def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir=Path(), names=(), eps=1e-16, prefix=''): """ Computes the average precision per class for object detection evaluation. Args: tp (np.ndarray): Binary array indicating whether the detection is correct (True) or not (False). conf (np.ndarray): Array of confidence scores of the detections. pred_cls (np.ndarray): Array of predicted classes of the detections. target_cls (np.ndarray): Array of true classes of the detections. plot (bool, optional): Whether to plot PR curves or not. Defaults to False. save_dir (Path, optional): Directory to save the PR curves. Defaults to an empty path. names (tuple, optional): Tuple of class names to plot PR curves. Defaults to an empty tuple. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-16. prefix (str, optional): A prefix string for saving the plot files. Defaults to an empty string. Returns: (tuple): A tuple of six arrays and one array of unique classes, where: tp (np.ndarray): True positive counts for each class. fp (np.ndarray): False positive counts for each class. p (np.ndarray): Precision values at each confidence threshold. r (np.ndarray): Recall values at each confidence threshold. f1 (np.ndarray): F1-score values at each confidence threshold. ap (np.ndarray): Average precision for each class at different IoU thresholds. unique_classes (np.ndarray): An array of unique classes that have data. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes, nt = np.unique(target_cls, return_counts=True) nc = unique_classes.shape[0] # number of classes, number of detections # Create Precision-Recall curve and compute AP for each class px, py = np.linspace(0, 1, 1000), [] # for plotting ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) for ci, c in enumerate(unique_classes): i = pred_cls == c n_l = nt[ci] # number of labels n_p = i.sum() # number of predictions if n_p == 0 or n_l == 0: continue # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum(0) tpc = tp[i].cumsum(0) # Recall recall = tpc / (n_l + eps) # recall curve r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases # Precision precision = tpc / (tpc + fpc) # precision curve p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score # AP from recall-precision curve for j in range(tp.shape[1]): ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) if plot and j == 0: py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 # Compute F1 (harmonic mean of precision and recall) f1 = 2 * p * r / (p + r + eps) names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data names = dict(enumerate(names)) # to dict if plot: plot_pr_curve(px, py, ap, save_dir / f'{prefix}PR_curve.png', names) plot_mc_curve(px, f1, save_dir / f'{prefix}F1_curve.png', names, ylabel='F1') plot_mc_curve(px, p, save_dir / f'{prefix}P_curve.png', names, ylabel='Precision') plot_mc_curve(px, r, save_dir / f'{prefix}R_curve.png', names, ylabel='Recall') i = smooth(f1.mean(0), 0.1).argmax() # max F1 index p, r, f1 = p[:, i], r[:, i], f1[:, i] tp = (r * nt).round() # true positives fp = (tp / (p + eps) - tp).round() # false positives return tp, fp, p, r, f1, ap, unique_classes.astype(int) class Metric(SimpleClass): """ Class for computing evaluation metrics for YOLOv8 model. Attributes: p (list): Precision for each class. Shape: (nc,). r (list): Recall for each class. Shape: (nc,). f1 (list): F1 score for each class. Shape: (nc,). all_ap (list): AP scores for all classes and all IoU thresholds. Shape: (nc, 10). ap_class_index (list): Index of class for each AP score. Shape: (nc,). nc (int): Number of classes. Methods: ap50(): AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or []. ap(): AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or []. mp(): Mean precision of all classes. Returns: Float. mr(): Mean recall of all classes. Returns: Float. map50(): Mean AP at IoU threshold of 0.5 for all classes. Returns: Float. map75(): Mean AP at IoU threshold of 0.75 for all classes. Returns: Float. map(): Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float. mean_results(): Mean of results, returns mp, mr, map50, map. class_result(i): Class-aware result, returns p[i], r[i], ap50[i], ap[i]. maps(): mAP of each class. Returns: Array of mAP scores, shape: (nc,). fitness(): Model fitness as a weighted combination of metrics. Returns: Float. update(results): Update metric attributes with new evaluation results. """ def __init__(self) -> None: self.p = [] # (nc, ) self.r = [] # (nc, ) self.f1 = [] # (nc, ) self.all_ap = [] # (nc, 10) self.ap_class_index = [] # (nc, ) self.nc = 0 @property def ap50(self): """AP@0.5 of all classes. Returns: (nc, ) or []. """ return self.all_ap[:, 0] if len(self.all_ap) else [] @property def ap(self): """AP@0.5:0.95 Returns: (nc, ) or []. """ return self.all_ap.mean(1) if len(self.all_ap) else [] @property def mp(self): """mean precision of all classes. Returns: float. """ return self.p.mean() if len(self.p) else 0.0 @property def mr(self): """mean recall of all classes. Returns: float. """ return self.r.mean() if len(self.r) else 0.0 @property def map50(self): """Mean AP@0.5 of all classes. Returns: float. """ return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0 @property def map75(self): """Mean AP@0.75 of all classes. Returns: float. """ return self.all_ap[:, 5].mean() if len(self.all_ap) else 0.0 @property def map(self): """Mean AP@0.5:0.95 of all classes. Returns: float. """ return self.all_ap.mean() if len(self.all_ap) else 0.0 def mean_results(self): """Mean of results, return mp, mr, map50, map""" return [self.mp, self.mr, self.map50, self.map] def class_result(self, i): """class-aware result, return p[i], r[i], ap50[i], ap[i]""" return self.p[i], self.r[i], self.ap50[i], self.ap[i] @property def maps(self): """mAP of each class""" maps = np.zeros(self.nc) + self.map for i, c in enumerate(self.ap_class_index): maps[c] = self.ap[i] return maps def fitness(self): # Model fitness as a weighted combination of metrics w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] return (np.array(self.mean_results()) * w).sum() def update(self, results): """ Args: results: tuple(p, r, ap, f1, ap_class) """ self.p, self.r, self.f1, self.all_ap, self.ap_class_index = results class DetMetrics(SimpleClass): """ This class is a utility class for computing detection metrics such as precision, recall, and mean average precision (mAP) of an object detection model. Args: save_dir (Path): A path to the directory where the output plots will be saved. Defaults to current directory. plot (bool): A flag that indicates whether to plot precision-recall curves for each class. Defaults to False. names (tuple of str): A tuple of strings that represents the names of the classes. Defaults to an empty tuple. Attributes: save_dir (Path): A path to the directory where the output plots will be saved. plot (bool): A flag that indicates whether to plot the precision-recall curves for each class. names (tuple of str): A tuple of strings that represents the names of the classes. box (Metric): An instance of the Metric class for storing the results of the detection metrics. speed (dict): A dictionary for storing the execution time of different parts of the detection process. Methods: process(tp, conf, pred_cls, target_cls): Updates the metric results with the latest batch of predictions. keys: Returns a list of keys for accessing the computed detection metrics. mean_results: Returns a list of mean values for the computed detection metrics. class_result(i): Returns a list of values for the computed detection metrics for a specific class. maps: Returns a dictionary of mean average precision (mAP) values for different IoU thresholds. fitness: Computes the fitness score based on the computed detection metrics. ap_class_index: Returns a list of class indices sorted by their average precision (AP) values. results_dict: Returns a dictionary that maps detection metric keys to their computed values. """ def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None: self.save_dir = save_dir self.plot = plot self.names = names self.box = Metric() self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} def process(self, tp, conf, pred_cls, target_cls): results = ap_per_class(tp, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names)[2:] self.box.nc = len(self.names) self.box.update(results) @property def keys(self): return ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)'] def mean_results(self): return self.box.mean_results() def class_result(self, i): return self.box.class_result(i) @property def maps(self): return self.box.maps @property def fitness(self): return self.box.fitness() @property def ap_class_index(self): return self.box.ap_class_index @property def results_dict(self): return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness])) class SegmentMetrics(SimpleClass): """ Calculates and aggregates detection and segmentation metrics over a given set of classes. Args: save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory. plot (bool): Whether to save the detection and segmentation plots. Default is False. names (list): List of class names. Default is an empty list. Attributes: save_dir (Path): Path to the directory where the output plots should be saved. plot (bool): Whether to save the detection and segmentation plots. names (list): List of class names. box (Metric): An instance of the Metric class to calculate box detection metrics. seg (Metric): An instance of the Metric class to calculate mask segmentation metrics. speed (dict): Dictionary to store the time taken in different phases of inference. Methods: process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions. mean_results(): Returns the mean of the detection and segmentation metrics over all the classes. class_result(i): Returns the detection and segmentation metrics of class `i`. maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95. fitness: Returns the fitness scores, which are a single weighted combination of metrics. ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP). results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score. """ def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None: self.save_dir = save_dir self.plot = plot self.names = names self.box = Metric() self.seg = Metric() self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} def process(self, tp_b, tp_m, conf, pred_cls, target_cls): """ Processes the detection and segmentation metrics over the given set of predictions. Args: tp_b (list): List of True Positive boxes. tp_m (list): List of True Positive masks. conf (list): List of confidence scores. pred_cls (list): List of predicted classes. target_cls (list): List of target classes. """ results_mask = ap_per_class(tp_m, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names, prefix='Mask')[2:] self.seg.nc = len(self.names) self.seg.update(results_mask) results_box = ap_per_class(tp_b, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names, prefix='Box')[2:] self.box.nc = len(self.names) self.box.update(results_box) @property def keys(self): return [ 'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)', 'metrics/precision(M)', 'metrics/recall(M)', 'metrics/mAP50(M)', 'metrics/mAP50-95(M)'] def mean_results(self): return self.box.mean_results() + self.seg.mean_results() def class_result(self, i): return self.box.class_result(i) + self.seg.class_result(i) @property def maps(self): return self.box.maps + self.seg.maps @property def fitness(self): return self.seg.fitness() + self.box.fitness() @property def ap_class_index(self): # boxes and masks have the same ap_class_index return self.box.ap_class_index @property def results_dict(self): return dict(zip(self.keys + ['fitness'], self.mean_results() + [self.fitness])) class PoseMetrics(SegmentMetrics): """ Calculates and aggregates detection and pose metrics over a given set of classes. Args: save_dir (Path): Path to the directory where the output plots should be saved. Default is the current directory. plot (bool): Whether to save the detection and segmentation plots. Default is False. names (list): List of class names. Default is an empty list. Attributes: save_dir (Path): Path to the directory where the output plots should be saved. plot (bool): Whether to save the detection and segmentation plots. names (list): List of class names. box (Metric): An instance of the Metric class to calculate box detection metrics. pose (Metric): An instance of the Metric class to calculate mask segmentation metrics. speed (dict): Dictionary to store the time taken in different phases of inference. Methods: process(tp_m, tp_b, conf, pred_cls, target_cls): Processes metrics over the given set of predictions. mean_results(): Returns the mean of the detection and segmentation metrics over all the classes. class_result(i): Returns the detection and segmentation metrics of class `i`. maps: Returns the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95. fitness: Returns the fitness scores, which are a single weighted combination of metrics. ap_class_index: Returns the list of indices of classes used to compute Average Precision (AP). results_dict: Returns the dictionary containing all the detection and segmentation metrics and fitness score. """ def __init__(self, save_dir=Path('.'), plot=False, names=()) -> None: super().__init__(save_dir, plot, names) self.save_dir = save_dir self.plot = plot self.names = names self.box = Metric() self.pose = Metric() self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} def __getattr__(self, attr): name = self.__class__.__name__ raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") def process(self, tp_b, tp_p, conf, pred_cls, target_cls): """ Processes the detection and pose metrics over the given set of predictions. Args: tp_b (list): List of True Positive boxes. tp_p (list): List of True Positive keypoints. conf (list): List of confidence scores. pred_cls (list): List of predicted classes. target_cls (list): List of target classes. """ results_pose = ap_per_class(tp_p, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names, prefix='Pose')[2:] self.pose.nc = len(self.names) self.pose.update(results_pose) results_box = ap_per_class(tp_b, conf, pred_cls, target_cls, plot=self.plot, save_dir=self.save_dir, names=self.names, prefix='Box')[2:] self.box.nc = len(self.names) self.box.update(results_box) @property def keys(self): return [ 'metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)', 'metrics/precision(P)', 'metrics/recall(P)', 'metrics/mAP50(P)', 'metrics/mAP50-95(P)'] def mean_results(self): return self.box.mean_results() + self.pose.mean_results() def class_result(self, i): return self.box.class_result(i) + self.pose.class_result(i) @property def maps(self): return self.box.maps + self.pose.maps @property def fitness(self): return self.pose.fitness() + self.box.fitness() class ClassifyMetrics(SimpleClass): """ Class for computing classification metrics including top-1 and top-5 accuracy. Attributes: top1 (float): The top-1 accuracy. top5 (float): The top-5 accuracy. speed (Dict[str, float]): A dictionary containing the time taken for each step in the pipeline. Properties: fitness (float): The fitness of the model, which is equal to top-5 accuracy. results_dict (Dict[str, Union[float, str]]): A dictionary containing the classification metrics and fitness. keys (List[str]): A list of keys for the results_dict. Methods: process(targets, pred): Processes the targets and predictions to compute classification metrics. """ def __init__(self) -> None: self.top1 = 0 self.top5 = 0 self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} def process(self, targets, pred): # target classes and predicted classes pred, targets = torch.cat(pred), torch.cat(targets) correct = (targets[:, None] == pred).float() acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy self.top1, self.top5 = acc.mean(0).tolist() @property def fitness(self): return self.top5 @property def results_dict(self): return dict(zip(self.keys + ['fitness'], [self.top1, self.top5, self.fitness])) @property def keys(self): return ['metrics/accuracy_top1', 'metrics/accuracy_top5']