# Ultralytics YOLO 🚀, GPL-3.0 license """ Train a model on a dataset Usage: $ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16 """ import os import subprocess import time from copy import deepcopy from datetime import datetime from pathlib import Path import numpy as np import torch import torch.distributed as dist import torch.nn as nn from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import lr_scheduler from tqdm import tqdm from ultralytics.nn.tasks import attempt_load_one_weight, attempt_load_weights from ultralytics.yolo.cfg import get_cfg from ultralytics.yolo.data.utils import check_cls_dataset, check_det_dataset from ultralytics.yolo.utils import (DEFAULT_CFG, LOGGER, ONLINE, RANK, ROOT, SETTINGS, TQDM_BAR_FORMAT, __version__, callbacks, clean_url, colorstr, emojis, yaml_save) from ultralytics.yolo.utils.autobatch import check_train_batch_size from ultralytics.yolo.utils.checks import check_file, check_imgsz, print_args from ultralytics.yolo.utils.dist import ddp_cleanup, generate_ddp_command from ultralytics.yolo.utils.files import get_latest_run, increment_path from ultralytics.yolo.utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, init_seeds, one_cycle, select_device, strip_optimizer) class BaseTrainer: """ BaseTrainer A base class for creating trainers. Attributes: args (SimpleNamespace): Configuration for the trainer. check_resume (method): Method to check if training should be resumed from a saved checkpoint. validator (BaseValidator): Validator instance. model (nn.Module): Model instance. callbacks (defaultdict): Dictionary of callbacks. save_dir (Path): Directory to save results. wdir (Path): Directory to save weights. last (Path): Path to last checkpoint. best (Path): Path to best checkpoint. save_period (int): Save checkpoint every x epochs (disabled if < 1). batch_size (int): Batch size for training. epochs (int): Number of epochs to train for. start_epoch (int): Starting epoch for training. device (torch.device): Device to use for training. amp (bool): Flag to enable AMP (Automatic Mixed Precision). scaler (amp.GradScaler): Gradient scaler for AMP. data (str): Path to data. trainset (torch.utils.data.Dataset): Training dataset. testset (torch.utils.data.Dataset): Testing dataset. ema (nn.Module): EMA (Exponential Moving Average) of the model. lf (nn.Module): Loss function. scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler. best_fitness (float): The best fitness value achieved. fitness (float): Current fitness value. loss (float): Current loss value. tloss (float): Total loss value. loss_names (list): List of loss names. csv (Path): Path to results CSV file. """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """ Initializes the BaseTrainer class. Args: cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. overrides (dict, optional): Configuration overrides. Defaults to None. """ self.args = get_cfg(cfg, overrides) self.device = select_device(self.args.device, self.args.batch) self.check_resume() self.validator = None self.model = None self.metrics = None init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic) # Dirs project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task name = self.args.name or f'{self.args.mode}' if hasattr(self.args, 'save_dir'): self.save_dir = Path(self.args.save_dir) else: self.save_dir = Path( increment_path(Path(project) / name, exist_ok=self.args.exist_ok if RANK in (-1, 0) else True)) self.wdir = self.save_dir / 'weights' # weights dir if RANK in (-1, 0): self.wdir.mkdir(parents=True, exist_ok=True) # make dir self.args.save_dir = str(self.save_dir) yaml_save(self.save_dir / 'args.yaml', vars(self.args)) # save run args self.last, self.best = self.wdir / 'last.pt', self.wdir / 'best.pt' # checkpoint paths self.save_period = self.args.save_period self.batch_size = self.args.batch self.epochs = self.args.epochs self.start_epoch = 0 if RANK == -1: print_args(vars(self.args)) # Device if self.device.type == 'cpu': self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading # Model and Dataset self.model = self.args.model try: if self.args.task == 'classify': self.data = check_cls_dataset(self.args.data) elif self.args.data.endswith('.yaml') or self.args.task in ('detect', 'segment'): self.data = check_det_dataset(self.args.data) if 'yaml_file' in self.data: self.args.data = self.data['yaml_file'] # for validating 'yolo train data=url.zip' usage except Exception as e: raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e self.trainset, self.testset = self.get_dataset(self.data) self.ema = None # Optimization utils init self.lf = None self.scheduler = None # Epoch level metrics self.best_fitness = None self.fitness = None self.loss = None self.tloss = None self.loss_names = ['Loss'] self.csv = self.save_dir / 'results.csv' self.plot_idx = [0, 1, 2] # Callbacks self.callbacks = _callbacks or callbacks.get_default_callbacks() if RANK in (-1, 0): callbacks.add_integration_callbacks(self) def add_callback(self, event: str, callback): """ Appends the given callback. """ self.callbacks[event].append(callback) def set_callback(self, event: str, callback): """ Overrides the existing callbacks with the given callback. """ self.callbacks[event] = [callback] def run_callbacks(self, event: str): for callback in self.callbacks.get(event, []): callback(self) def train(self): # Allow device='', device=None on Multi-GPU systems to default to device=0 if isinstance(self.args.device, int) or self.args.device: # i.e. device=0 or device=[0,1,2,3] world_size = torch.cuda.device_count() elif torch.cuda.is_available(): # i.e. device=None or device='' world_size = 1 # default to device 0 else: # i.e. device='cpu' or 'mps' world_size = 0 # Run subprocess if DDP training, else train normally if world_size > 1 and 'LOCAL_RANK' not in os.environ: # Argument checks if self.args.rect: LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with Multi-GPU training, setting rect=False") self.args.rect = False # Command cmd, file = generate_ddp_command(world_size, self) try: LOGGER.info(f'Running DDP command {cmd}') subprocess.run(cmd, check=True) except Exception as e: raise e finally: ddp_cleanup(self, str(file)) else: self._do_train(world_size) def _setup_ddp(self, world_size): torch.cuda.set_device(RANK) self.device = torch.device('cuda', RANK) LOGGER.info(f'DDP settings: RANK {RANK}, WORLD_SIZE {world_size}, DEVICE {self.device}') dist.init_process_group('nccl' if dist.is_nccl_available() else 'gloo', rank=RANK, world_size=world_size) def _setup_train(self, world_size): """ Builds dataloaders and optimizer on correct rank process. """ # Model self.run_callbacks('on_pretrain_routine_start') ckpt = self.setup_model() self.model = self.model.to(self.device) self.set_model_attributes() # Check AMP self.amp = torch.tensor(self.args.amp).to(self.device) # True or False if self.amp and RANK in (-1, 0): # Single-GPU and DDP callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them self.amp = torch.tensor(check_amp(self.model), device=self.device) callbacks.default_callbacks = callbacks_backup # restore callbacks if RANK > -1: # DDP dist.broadcast(self.amp, src=0) # broadcast the tensor from rank 0 to all other ranks (returns None) self.amp = bool(self.amp) # as boolean self.scaler = amp.GradScaler(enabled=self.amp) if world_size > 1: self.model = DDP(self.model, device_ids=[RANK]) # Check imgsz gs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32) # grid size (max stride) self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1) # Batch size if self.batch_size == -1: if RANK == -1: # single-GPU only, estimate best batch size self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp) else: SyntaxError('batch=-1 to use AutoBatch is only available in Single-GPU training. ' 'Please pass a valid batch size value for Multi-GPU DDP training, i.e. batch=16') # Optimizer self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs # scale weight_decay self.optimizer = self.build_optimizer(model=self.model, name=self.args.optimizer, lr=self.args.lr0, momentum=self.args.momentum, decay=weight_decay) # Scheduler if self.args.cos_lr: self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf'] else: self.lf = lambda x: (1 - x / self.epochs) * (1.0 - self.args.lrf) + self.args.lrf # linear self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf) self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False # Dataloaders batch_size = self.batch_size // world_size if world_size > 1 else self.batch_size self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train') if RANK in (-1, 0): self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode='val') self.validator = self.get_validator() metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix='val') self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) # TODO: init metrics for plot_results()? self.ema = ModelEMA(self.model) if self.args.plots and not self.args.v5loader: self.plot_training_labels() self.resume_training(ckpt) self.scheduler.last_epoch = self.start_epoch - 1 # do not move self.run_callbacks('on_pretrain_routine_end') def _do_train(self, world_size=1): if world_size > 1: self._setup_ddp(world_size) self._setup_train(world_size) self.epoch_time = None self.epoch_time_start = time.time() self.train_time_start = time.time() nb = len(self.train_loader) # number of batches nw = max(round(self.args.warmup_epochs * nb), 100) # number of warmup iterations last_opt_step = -1 self.run_callbacks('on_train_start') LOGGER.info(f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n' f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n' f"Logging results to {colorstr('bold', self.save_dir)}\n" f'Starting training for {self.epochs} epochs...') if self.args.close_mosaic: base_idx = (self.epochs - self.args.close_mosaic) * nb self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2]) for epoch in range(self.start_epoch, self.epochs): self.epoch = epoch self.run_callbacks('on_train_epoch_start') self.model.train() if RANK != -1: self.train_loader.sampler.set_epoch(epoch) pbar = enumerate(self.train_loader) # Update dataloader attributes (optional) if epoch == (self.epochs - self.args.close_mosaic): LOGGER.info('Closing dataloader mosaic') if hasattr(self.train_loader.dataset, 'mosaic'): self.train_loader.dataset.mosaic = False if hasattr(self.train_loader.dataset, 'close_mosaic'): self.train_loader.dataset.close_mosaic(hyp=self.args) if RANK in (-1, 0): LOGGER.info(self.progress_string()) pbar = tqdm(enumerate(self.train_loader), total=nb, bar_format=TQDM_BAR_FORMAT) self.tloss = None self.optimizer.zero_grad() for i, batch in pbar: self.run_callbacks('on_train_batch_start') # Warmup ni = i + nb * epoch if ni <= nw: xi = [0, nw] # x interp self.accumulate = max(1, np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round()) for j, x in enumerate(self.optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp( ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x['initial_lr'] * self.lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum]) # Forward with torch.cuda.amp.autocast(self.amp): batch = self.preprocess_batch(batch) preds = self.model(batch['img']) self.loss, self.loss_items = self.criterion(preds, batch) if RANK != -1: self.loss *= world_size self.tloss = (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None \ else self.loss_items # Backward self.scaler.scale(self.loss).backward() # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html if ni - last_opt_step >= self.accumulate: self.optimizer_step() last_opt_step = ni # Log mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) loss_len = self.tloss.shape[0] if len(self.tloss.size()) else 1 losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0) if RANK in (-1, 0): pbar.set_description( ('%11s' * 2 + '%11.4g' * (2 + loss_len)) % (f'{epoch + 1}/{self.epochs}', mem, *losses, batch['cls'].shape[0], batch['img'].shape[-1])) self.run_callbacks('on_batch_end') if self.args.plots and ni in self.plot_idx: self.plot_training_samples(batch, ni) self.run_callbacks('on_train_batch_end') self.lr = {f'lr/pg{ir}': x['lr'] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers self.scheduler.step() self.run_callbacks('on_train_epoch_end') if RANK in (-1, 0): # Validation self.ema.update_attr(self.model, include=['yaml', 'nc', 'args', 'names', 'stride', 'class_weights']) final_epoch = (epoch + 1 == self.epochs) or self.stopper.possible_stop if self.args.val or final_epoch: self.metrics, self.fitness = self.validate() self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr}) self.stop = self.stopper(epoch + 1, self.fitness) # Save model if self.args.save or (epoch + 1 == self.epochs): self.save_model() self.run_callbacks('on_model_save') tnow = time.time() self.epoch_time = tnow - self.epoch_time_start self.epoch_time_start = tnow self.run_callbacks('on_fit_epoch_end') torch.cuda.empty_cache() # clears GPU vRAM at end of epoch, can help with out of memory errors # Early Stopping if RANK != -1: # if DDP training broadcast_list = [self.stop if RANK == 0 else None] dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks if RANK != 0: self.stop = broadcast_list[0] if self.stop: break # must break all DDP ranks if RANK in (-1, 0): # Do final val with best.pt LOGGER.info(f'\n{epoch - self.start_epoch + 1} epochs completed in ' f'{(time.time() - self.train_time_start) / 3600:.3f} hours.') self.final_eval() if self.args.plots: self.plot_metrics() self.run_callbacks('on_train_end') torch.cuda.empty_cache() self.run_callbacks('teardown') def save_model(self): ckpt = { 'epoch': self.epoch, 'best_fitness': self.best_fitness, 'model': deepcopy(de_parallel(self.model)).half(), 'ema': deepcopy(self.ema.ema).half(), 'updates': self.ema.updates, 'optimizer': self.optimizer.state_dict(), 'train_args': vars(self.args), # save as dict 'date': datetime.now().isoformat(), 'version': __version__} # Save last, best and delete torch.save(ckpt, self.last) if self.best_fitness == self.fitness: torch.save(ckpt, self.best) if (self.epoch > 0) and (self.save_period > 0) and (self.epoch % self.save_period == 0): torch.save(ckpt, self.wdir / f'epoch{self.epoch}.pt') del ckpt @staticmethod def get_dataset(data): """ Get train, val path from data dict if it exists. Returns None if data format is not recognized. """ return data['train'], data.get('val') or data.get('test') def setup_model(self): """ load/create/download model for any task. """ if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed return model, weights = self.model, None ckpt = None if str(model).endswith('.pt'): weights, ckpt = attempt_load_one_weight(model) cfg = ckpt['model'].yaml else: cfg = model self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1) # calls Model(cfg, weights) return ckpt def optimizer_step(self): self.scaler.unscale_(self.optimizer) # unscale gradients torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients self.scaler.step(self.optimizer) self.scaler.update() self.optimizer.zero_grad() if self.ema: self.ema.update(self.model) def preprocess_batch(self, batch): """ Allows custom preprocessing model inputs and ground truths depending on task type. """ return batch def validate(self): """ Runs validation on test set using self.validator. The returned dict is expected to contain "fitness" key. """ metrics = self.validator(self) fitness = metrics.pop('fitness', -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found if not self.best_fitness or self.best_fitness < fitness: self.best_fitness = fitness return metrics, fitness def get_model(self, cfg=None, weights=None, verbose=True): raise NotImplementedError("This task trainer doesn't support loading cfg files") def get_validator(self): raise NotImplementedError('get_validator function not implemented in trainer') def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode='train'): """ Returns dataloader derived from torch.data.Dataloader. """ raise NotImplementedError('get_dataloader function not implemented in trainer') def criterion(self, preds, batch): """ Returns loss and individual loss items as Tensor. """ raise NotImplementedError('criterion function not implemented in trainer') def label_loss_items(self, loss_items=None, prefix='train'): """ Returns a loss dict with labelled training loss items tensor """ # Not needed for classification but necessary for segmentation & detection return {'loss': loss_items} if loss_items is not None else ['loss'] def set_model_attributes(self): """ To set or update model parameters before training. """ self.model.names = self.data['names'] def build_targets(self, preds, targets): pass def progress_string(self): return '' # TODO: may need to put these following functions into callback def plot_training_samples(self, batch, ni): pass def plot_training_labels(self): pass def save_metrics(self, metrics): keys, vals = list(metrics.keys()), list(metrics.values()) n = len(metrics) + 1 # number of cols s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header with open(self.csv, 'a') as f: f.write(s + ('%23.5g,' * n % tuple([self.epoch] + vals)).rstrip(',') + '\n') def plot_metrics(self): pass def final_eval(self): for f in self.last, self.best: if f.exists(): strip_optimizer(f) # strip optimizers if f is self.best: LOGGER.info(f'\nValidating {f}...') self.metrics = self.validator(model=f) self.metrics.pop('fitness', None) self.run_callbacks('on_fit_epoch_end') def check_resume(self): resume = self.args.resume if resume: try: last = Path( check_file(resume) if isinstance(resume, (str, Path)) and Path(resume).exists() else get_latest_run()) self.args = get_cfg(attempt_load_weights(last).args) self.args.model, resume = str(last), True # reinstate except Exception as e: raise FileNotFoundError('Resume checkpoint not found. Please pass a valid checkpoint to resume from, ' "i.e. 'yolo train resume model=path/to/last.pt'") from e self.resume = resume def resume_training(self, ckpt): if ckpt is None: return best_fitness = 0.0 start_epoch = ckpt['epoch'] + 1 if ckpt['optimizer'] is not None: self.optimizer.load_state_dict(ckpt['optimizer']) # optimizer best_fitness = ckpt['best_fitness'] if self.ema and ckpt.get('ema'): self.ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA self.ema.updates = ckpt['updates'] if self.resume: assert start_epoch > 0, \ f'{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n' \ f"Start a new training without resuming, i.e. 'yolo train model={self.args.model}'" LOGGER.info( f'Resuming training from {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs') if self.epochs < start_epoch: LOGGER.info( f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs.") self.epochs += ckpt['epoch'] # finetune additional epochs self.best_fitness = best_fitness self.start_epoch = start_epoch if start_epoch > (self.epochs - self.args.close_mosaic): LOGGER.info('Closing dataloader mosaic') if hasattr(self.train_loader.dataset, 'mosaic'): self.train_loader.dataset.mosaic = False if hasattr(self.train_loader.dataset, 'close_mosaic'): self.train_loader.dataset.close_mosaic(hyp=self.args) @staticmethod def build_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): """ Builds an optimizer with the specified parameters and parameter groups. Args: model (nn.Module): model to optimize name (str): name of the optimizer to use lr (float): learning rate momentum (float): momentum decay (float): weight decay Returns: optimizer (torch.optim.Optimizer): the built optimizer """ g = [], [], [] # optimizer parameter groups bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay) g[2].append(v.bias) if isinstance(v, bn): # weight (no decay) g[1].append(v.weight) elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) g[0].append(v.weight) if name == 'Adam': optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum elif name == 'AdamW': optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) elif name == 'RMSProp': optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) elif name == 'SGD': optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) else: raise NotImplementedError(f'Optimizer {name} not implemented.') optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias') return optimizer def check_amp(model): """ This function checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLOv8 model. If the checks fail, it means there are anomalies with AMP on the system that may cause NaN losses or zero-mAP results, so AMP will be disabled during training. Args: model (nn.Module): A YOLOv8 model instance. Returns: bool: Returns True if the AMP functionality works correctly with YOLOv8 model, else False. Raises: AssertionError: If the AMP checks fail, indicating anomalies with the AMP functionality on the system. """ device = next(model.parameters()).device # get model device if device.type in ('cpu', 'mps'): return False # AMP only used on CUDA devices def amp_allclose(m, im): # All close FP32 vs AMP results a = m(im, device=device, verbose=False)[0].boxes.data # FP32 inference with torch.cuda.amp.autocast(True): b = m(im, device=device, verbose=False)[0].boxes.data # AMP inference del m return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance f = ROOT / 'assets/bus.jpg' # image to check im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if ONLINE else np.ones((640, 640, 3)) prefix = colorstr('AMP: ') LOGGER.info(f'{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...') try: from ultralytics import YOLO assert amp_allclose(YOLO('yolov8n.pt'), im) LOGGER.info(f'{prefix}checks passed ✅') except ConnectionError: LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. Setting 'amp=True'.") except AssertionError: LOGGER.warning(f'{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to ' f'NaN losses or zero-mAP results, so AMP will be disabled during training.') return False return True