from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params try: import clearml from clearml import Task assert hasattr(clearml, '__version__') except (ImportError, AssertionError): clearml = None def _log_images(imgs_dict, group="", step=0): task = Task.current_task() if task: for k, v in imgs_dict.items(): task.get_logger().report_image(group, k, step, v) def on_train_start(trainer): # TODO: reuse existing task task = Task.init(project_name=trainer.args.project if trainer.args.project != 'runs/train' else 'YOLOv8', task_name=trainer.args.name, tags=['YOLOv8'], output_uri=True, reuse_last_task_id=False, auto_connect_frameworks={'pytorch': False}) task.connect(dict(trainer.args), name='General') def on_train_epoch_end(trainer): if trainer.epoch == 1: _log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, "Mosaic", trainer.epoch) def on_val_end(trainer): if trainer.epoch == 0: model_info = { "Parameters": get_num_params(trainer.model), "GFLOPs": round(get_flops(trainer.model), 1), "Inference speed (ms/img)": round(trainer.validator.speed[1], 1)} Task.current_task().connect(model_info, name='Model') def on_train_end(trainer): Task.current_task().update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) callbacks = { "on_train_start": on_train_start, "on_train_epoch_end": on_train_epoch_end, "on_val_end": on_val_end, "on_train_end": on_train_end} if clearml else {}