# Ultralytics YOLO 🚀, AGPL-3.0 license import math import random from copy import deepcopy import cv2 import numpy as np import torch import torchvision.transforms as T from ..utils import LOGGER, colorstr from ..utils.checks import check_version from ..utils.instance import Instances from ..utils.metrics import bbox_ioa from ..utils.ops import segment2box from .utils import polygons2masks, polygons2masks_overlap POSE_FLIPLR_INDEX = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] # TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic class BaseTransform: def __init__(self) -> None: pass def apply_image(self, labels): """Applies image transformation to labels.""" pass def apply_instances(self, labels): """Applies transformations to input 'labels' and returns object instances.""" pass def apply_semantic(self, labels): """Applies semantic segmentation to an image.""" pass def __call__(self, labels): """Applies label transformations to an image, instances and semantic masks.""" self.apply_image(labels) self.apply_instances(labels) self.apply_semantic(labels) class Compose: def __init__(self, transforms): """Initializes the Compose object with a list of transforms.""" self.transforms = transforms def __call__(self, data): """Applies a series of transformations to input data.""" for t in self.transforms: data = t(data) return data def append(self, transform): """Appends a new transform to the existing list of transforms.""" self.transforms.append(transform) def tolist(self): """Converts list of transforms to a standard Python list.""" return self.transforms def __repr__(self): """Return string representation of object.""" format_string = f'{self.__class__.__name__}(' for t in self.transforms: format_string += '\n' format_string += f' {t}' format_string += '\n)' return format_string class BaseMixTransform: """This implementation is from mmyolo.""" def __init__(self, dataset, pre_transform=None, p=0.0) -> None: self.dataset = dataset self.pre_transform = pre_transform self.p = p def __call__(self, labels): """Applies pre-processing transforms and mixup/mosaic transforms to labels data.""" if random.uniform(0, 1) > self.p: return labels # Get index of one or three other images indexes = self.get_indexes() if isinstance(indexes, int): indexes = [indexes] # Get images information will be used for Mosaic or MixUp mix_labels = [self.dataset.get_label_info(i) for i in indexes] if self.pre_transform is not None: for i, data in enumerate(mix_labels): mix_labels[i] = self.pre_transform(data) labels['mix_labels'] = mix_labels # Mosaic or MixUp labels = self._mix_transform(labels) labels.pop('mix_labels', None) return labels def _mix_transform(self, labels): """Applies MixUp or Mosaic augmentation to the label dictionary.""" raise NotImplementedError def get_indexes(self): """Gets a list of shuffled indexes for mosaic augmentation.""" raise NotImplementedError class Mosaic(BaseMixTransform): """ Mosaic augmentation. This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. The augmentation is applied to a dataset with a given probability. Attributes: dataset: The dataset on which the mosaic augmentation is applied. imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640. p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0. n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3). """ def __init__(self, dataset, imgsz=640, p=1.0, n=4): """Initializes the object with a dataset, image size, probability, and border.""" assert 0 <= p <= 1.0, f'The probability should be in range [0, 1], but got {p}.' assert n in (4, 9), 'grid must be equal to 4 or 9.' super().__init__(dataset=dataset, p=p) self.dataset = dataset self.imgsz = imgsz self.border = [-imgsz // 2, -imgsz // 2] if n == 4 else [-imgsz, -imgsz] self.n = n def get_indexes(self): """Return a list of random indexes from the dataset.""" return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] def _mix_transform(self, labels): """Apply mixup transformation to the input image and labels.""" assert labels.get('rect_shape', None) is None, 'rect and mosaic are mutually exclusive.' assert len(labels.get('mix_labels', [])), 'There are no other images for mosaic augment.' return self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) def _mosaic4(self, labels): """Create a 2x2 image mosaic.""" mosaic_labels = [] s = self.imgsz yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y for i in range(4): labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] # Load image img = labels_patch['img'] h, w = labels_patch.pop('resized_shape') # Place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b labels_patch = self._update_labels(labels_patch, padw, padh) mosaic_labels.append(labels_patch) final_labels = self._cat_labels(mosaic_labels) final_labels['img'] = img4 return final_labels def _mosaic9(self, labels): """Create a 3x3 image mosaic.""" mosaic_labels = [] s = self.imgsz hp, wp = -1, -1 # height, width previous for i in range(9): labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] # Load image img = labels_patch['img'] h, w = labels_patch.pop('resized_shape') # Place img in img9 if i == 0: # center img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles h0, w0 = h, w c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates elif i == 1: # top c = s, s - h, s + w, s elif i == 2: # top right c = s + wp, s - h, s + wp + w, s elif i == 3: # right c = s + w0, s, s + w0 + w, s + h elif i == 4: # bottom right c = s + w0, s + hp, s + w0 + w, s + hp + h elif i == 5: # bottom c = s + w0 - w, s + h0, s + w0, s + h0 + h elif i == 6: # bottom left c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h elif i == 7: # left c = s - w, s + h0 - h, s, s + h0 elif i == 8: # top left c = s - w, s + h0 - hp - h, s, s + h0 - hp padw, padh = c[:2] x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords # Image img9[y1:y2, x1:x2] = img[y1 - padh:, x1 - padw:] # img9[ymin:ymax, xmin:xmax] hp, wp = h, w # height, width previous for next iteration labels_patch = self._update_labels(labels_patch, padw, padh) mosaic_labels.append(labels_patch) final_labels = self._cat_labels(mosaic_labels) final_labels['img'] = img9 return final_labels @staticmethod def _update_labels(labels, padw, padh): """Update labels.""" nh, nw = labels['img'].shape[:2] labels['instances'].convert_bbox(format='xyxy') labels['instances'].denormalize(nw, nh) labels['instances'].add_padding(padw, padh) return labels def _cat_labels(self, mosaic_labels): """Return labels with mosaic border instances clipped.""" if len(mosaic_labels) == 0: return {} cls = [] instances = [] for labels in mosaic_labels: cls.append(labels['cls']) instances.append(labels['instances']) final_labels = { 'im_file': mosaic_labels[0]['im_file'], 'ori_shape': mosaic_labels[0]['ori_shape'], 'resized_shape': (self.imgsz * 2, self.imgsz * 2), 'cls': np.concatenate(cls, 0), 'instances': Instances.concatenate(instances, axis=0), 'mosaic_border': self.border} # final_labels clip_size = self.imgsz * (2 if self.n == 4 else 3) final_labels['instances'].clip(clip_size, clip_size) return final_labels class MixUp(BaseMixTransform): def __init__(self, dataset, pre_transform=None, p=0.0) -> None: super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) def get_indexes(self): """Get a random index from the dataset.""" return random.randint(0, len(self.dataset) - 1) def _mix_transform(self, labels): """Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf.""" r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 labels2 = labels['mix_labels'][0] labels['img'] = (labels['img'] * r + labels2['img'] * (1 - r)).astype(np.uint8) labels['instances'] = Instances.concatenate([labels['instances'], labels2['instances']], axis=0) labels['cls'] = np.concatenate([labels['cls'], labels2['cls']], 0) return labels class RandomPerspective: def __init__(self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None): self.degrees = degrees self.translate = translate self.scale = scale self.shear = shear self.perspective = perspective # Mosaic border self.border = border self.pre_transform = pre_transform def affine_transform(self, img, border): """Center.""" C = np.eye(3, dtype=np.float32) C[0, 2] = -img.shape[1] / 2 # x translation (pixels) C[1, 2] = -img.shape[0] / 2 # y translation (pixels) # Perspective P = np.eye(3, dtype=np.float32) P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y) P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x) # Rotation and Scale R = np.eye(3, dtype=np.float32) a = random.uniform(-self.degrees, self.degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations s = random.uniform(1 - self.scale, 1 + self.scale) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) # Shear S = np.eye(3, dtype=np.float32) S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg) # Translation T = np.eye(3, dtype=np.float32) T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels) T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels) # Combined rotation matrix M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT # Affine image if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed if self.perspective: img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) else: # affine img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) return img, M, s def apply_bboxes(self, bboxes, M): """ Apply affine to bboxes only. Args: bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). M (ndarray): affine matrix. Returns: new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4]. """ n = len(bboxes) if n == 0: return bboxes xy = np.ones((n * 4, 3), dtype=bboxes.dtype) xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = xy @ M.T # transform xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine # Create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T def apply_segments(self, segments, M): """ Apply affine to segments and generate new bboxes from segments. Args: segments (ndarray): list of segments, [num_samples, 500, 2]. M (ndarray): affine matrix. Returns: new_segments (ndarray): list of segments after affine, [num_samples, 500, 2]. new_bboxes (ndarray): bboxes after affine, [N, 4]. """ n, num = segments.shape[:2] if n == 0: return [], segments xy = np.ones((n * num, 3), dtype=segments.dtype) segments = segments.reshape(-1, 2) xy[:, :2] = segments xy = xy @ M.T # transform xy = xy[:, :2] / xy[:, 2:3] segments = xy.reshape(n, -1, 2) bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) return bboxes, segments def apply_keypoints(self, keypoints, M): """ Apply affine to keypoints. Args: keypoints (ndarray): keypoints, [N, 17, 3]. M (ndarray): affine matrix. Return: new_keypoints (ndarray): keypoints after affine, [N, 17, 3]. """ n, nkpt = keypoints.shape[:2] if n == 0: return keypoints xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) visible = keypoints[..., 2].reshape(n * nkpt, 1) xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) xy = xy @ M.T # transform xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) visible[out_mask] = 0 return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) def __call__(self, labels): """ Affine images and targets. Args: labels (dict): a dict of `bboxes`, `segments`, `keypoints`. """ if self.pre_transform and 'mosaic_border' not in labels: labels = self.pre_transform(labels) labels.pop('ratio_pad') # do not need ratio pad img = labels['img'] cls = labels['cls'] instances = labels.pop('instances') # Make sure the coord formats are right instances.convert_bbox(format='xyxy') instances.denormalize(*img.shape[:2][::-1]) border = labels.pop('mosaic_border', self.border) self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h # M is affine matrix # scale for func:`box_candidates` img, M, scale = self.affine_transform(img, border) bboxes = self.apply_bboxes(instances.bboxes, M) segments = instances.segments keypoints = instances.keypoints # Update bboxes if there are segments. if len(segments): bboxes, segments = self.apply_segments(segments, M) if keypoints is not None: keypoints = self.apply_keypoints(keypoints, M) new_instances = Instances(bboxes, segments, keypoints, bbox_format='xyxy', normalized=False) # Clip new_instances.clip(*self.size) # Filter instances instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) # Make the bboxes have the same scale with new_bboxes i = self.box_candidates(box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10) labels['instances'] = new_instances[i] labels['cls'] = cls[i] labels['img'] = img labels['resized_shape'] = img.shape[:2] return labels def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) # Compute box candidates: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio w1, h1 = box1[2] - box1[0], box1[3] - box1[1] w2, h2 = box2[2] - box2[0], box2[3] - box2[1] ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates class RandomHSV: def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: self.hgain = hgain self.sgain = sgain self.vgain = vgain def __call__(self, labels): """Applies random horizontal or vertical flip to an image with a given probability.""" img = labels['img'] if self.hgain or self.sgain or self.vgain: r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype # uint8 x = np.arange(0, 256, dtype=r.dtype) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed return labels class RandomFlip: def __init__(self, p=0.5, direction='horizontal', flip_idx=None) -> None: assert direction in ['horizontal', 'vertical'], f'Support direction `horizontal` or `vertical`, got {direction}' assert 0 <= p <= 1.0 self.p = p self.direction = direction self.flip_idx = flip_idx def __call__(self, labels): """Resize image and padding for detection, instance segmentation, pose.""" img = labels['img'] instances = labels.pop('instances') instances.convert_bbox(format='xywh') h, w = img.shape[:2] h = 1 if instances.normalized else h w = 1 if instances.normalized else w # Flip up-down if self.direction == 'vertical' and random.random() < self.p: img = np.flipud(img) instances.flipud(h) if self.direction == 'horizontal' and random.random() < self.p: img = np.fliplr(img) instances.fliplr(w) # For keypoints if self.flip_idx is not None and instances.keypoints is not None: instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) labels['img'] = np.ascontiguousarray(img) labels['instances'] = instances return labels class LetterBox: """Resize image and padding for detection, instance segmentation, pose.""" def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32): """Initialize LetterBox object with specific parameters.""" self.new_shape = new_shape self.auto = auto self.scaleFill = scaleFill self.scaleup = scaleup self.stride = stride def __call__(self, labels=None, image=None): """Return updated labels and image with added border.""" if labels is None: labels = {} img = labels.get('img') if image is None else image shape = img.shape[:2] # current shape [height, width] new_shape = labels.pop('rect_shape', self.new_shape) if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not self.scaleup: # only scale down, do not scale up (for better val mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if self.auto: # minimum rectangle dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding elif self.scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if labels.get('ratio_pad'): labels['ratio_pad'] = (labels['ratio_pad'], (dw, dh)) # for evaluation if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)) # add border if len(labels): labels = self._update_labels(labels, ratio, dw, dh) labels['img'] = img labels['resized_shape'] = new_shape return labels else: return img def _update_labels(self, labels, ratio, padw, padh): """Update labels.""" labels['instances'].convert_bbox(format='xyxy') labels['instances'].denormalize(*labels['img'].shape[:2][::-1]) labels['instances'].scale(*ratio) labels['instances'].add_padding(padw, padh) return labels class CopyPaste: def __init__(self, p=0.5) -> None: self.p = p def __call__(self, labels): """Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy).""" im = labels['img'] cls = labels['cls'] h, w = im.shape[:2] instances = labels.pop('instances') instances.convert_bbox(format='xyxy') instances.denormalize(w, h) if self.p and len(instances.segments): n = len(instances) _, w, _ = im.shape # height, width, channels im_new = np.zeros(im.shape, np.uint8) # Calculate ioa first then select indexes randomly ins_flip = deepcopy(instances) ins_flip.fliplr(w) ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M) indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) n = len(indexes) for j in random.sample(list(indexes), k=round(self.p * n)): cls = np.concatenate((cls, cls[[j]]), axis=0) instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) result = cv2.flip(im, 1) # augment segments (flip left-right) i = cv2.flip(im_new, 1).astype(bool) im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug labels['img'] = im labels['cls'] = cls labels['instances'] = instances return labels class Albumentations: # YOLOv8 Albumentations class (optional, only used if package is installed) def __init__(self, p=1.0): """Initialize the transform object for YOLO bbox formatted params.""" self.p = p self.transform = None prefix = colorstr('albumentations: ') try: import albumentations as A check_version(A.__version__, '1.0.3', hard=True) # version requirement T = [ A.Blur(p=0.01), A.MedianBlur(p=0.01), A.ToGray(p=0.01), A.CLAHE(p=0.01), A.RandomBrightnessContrast(p=0.0), A.RandomGamma(p=0.0), A.ImageCompression(quality_lower=75, p=0.0)] # transforms self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) except ImportError: # package not installed, skip pass except Exception as e: LOGGER.info(f'{prefix}{e}') def __call__(self, labels): """Generates object detections and returns a dictionary with detection results.""" im = labels['img'] cls = labels['cls'] if len(cls): labels['instances'].convert_bbox('xywh') labels['instances'].normalize(*im.shape[:2][::-1]) bboxes = labels['instances'].bboxes # TODO: add supports of segments and keypoints if self.transform and random.random() < self.p: new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed if len(new['class_labels']) > 0: # skip update if no bbox in new im labels['img'] = new['image'] labels['cls'] = np.array(new['class_labels']) bboxes = np.array(new['bboxes']) labels['instances'].update(bboxes=bboxes) return labels # TODO: technically this is not an augmentation, maybe we should put this to another files class Format: def __init__(self, bbox_format='xywh', normalize=True, return_mask=False, return_keypoint=False, mask_ratio=4, mask_overlap=True, batch_idx=True): self.bbox_format = bbox_format self.normalize = normalize self.return_mask = return_mask # set False when training detection only self.return_keypoint = return_keypoint self.mask_ratio = mask_ratio self.mask_overlap = mask_overlap self.batch_idx = batch_idx # keep the batch indexes def __call__(self, labels): """Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'.""" img = labels.pop('img') h, w = img.shape[:2] cls = labels.pop('cls') instances = labels.pop('instances') instances.convert_bbox(format=self.bbox_format) instances.denormalize(w, h) nl = len(instances) if self.return_mask: if nl: masks, instances, cls = self._format_segments(instances, cls, w, h) masks = torch.from_numpy(masks) else: masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio) labels['masks'] = masks if self.normalize: instances.normalize(w, h) labels['img'] = self._format_img(img) labels['cls'] = torch.from_numpy(cls) if nl else torch.zeros(nl) labels['bboxes'] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) if self.return_keypoint: labels['keypoints'] = torch.from_numpy(instances.keypoints) # Then we can use collate_fn if self.batch_idx: labels['batch_idx'] = torch.zeros(nl) return labels def _format_img(self, img): """Format the image for YOLOv5 from Numpy array to PyTorch tensor.""" if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1]) img = torch.from_numpy(img) return img def _format_segments(self, instances, cls, w, h): """convert polygon points to bitmap.""" segments = instances.segments if self.mask_overlap: masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) masks = masks[None] # (640, 640) -> (1, 640, 640) instances = instances[sorted_idx] cls = cls[sorted_idx] else: masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) return masks, instances, cls def v8_transforms(dataset, imgsz, hyp): """Convert images to a size suitable for YOLOv8 training.""" pre_transform = Compose([ Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), CopyPaste(p=hyp.copy_paste), RandomPerspective( degrees=hyp.degrees, translate=hyp.translate, scale=hyp.scale, shear=hyp.shear, perspective=hyp.perspective, pre_transform=LetterBox(new_shape=(imgsz, imgsz)), )]) flip_idx = dataset.data.get('flip_idx', None) # for keypoints augmentation if dataset.use_keypoints and flip_idx is None and hyp.fliplr > 0.0: hyp.fliplr = 0.0 LOGGER.warning("WARNING ⚠️ No `flip_idx` provided while training keypoints, setting augmentation 'fliplr=0.0'") return Compose([ pre_transform, MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), Albumentations(p=1.0), RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), RandomFlip(direction='vertical', p=hyp.flipud), RandomFlip(direction='horizontal', p=hyp.fliplr, flip_idx=flip_idx)]) # transforms # Classification augmentations ----------------------------------------------------------------------------------------- def classify_transforms(size=224, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)): # IMAGENET_MEAN, IMAGENET_STD # Transforms to apply if albumentations not installed if not isinstance(size, int): raise TypeError(f'classify_transforms() size {size} must be integer, not (list, tuple)') if any(mean) or any(std): return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(mean, std, inplace=True)]) else: return T.Compose([CenterCrop(size), ToTensor()]) def hsv2colorjitter(h, s, v): """Map HSV (hue, saturation, value) jitter into ColorJitter values (brightness, contrast, saturation, hue)""" return v, v, s, h def classify_albumentations( augment=True, size=224, scale=(0.08, 1.0), hflip=0.5, vflip=0.0, hsv_h=0.015, # image HSV-Hue augmentation (fraction) hsv_s=0.7, # image HSV-Saturation augmentation (fraction) hsv_v=0.4, # image HSV-Value augmentation (fraction) mean=(0.0, 0.0, 0.0), # IMAGENET_MEAN std=(1.0, 1.0, 1.0), # IMAGENET_STD auto_aug=False, ): # YOLOv8 classification Albumentations (optional, only used if package is installed) prefix = colorstr('albumentations: ') try: import albumentations as A from albumentations.pytorch import ToTensorV2 check_version(A.__version__, '1.0.3', hard=True) # version requirement if augment: # Resize and crop T = [A.RandomResizedCrop(height=size, width=size, scale=scale)] if auto_aug: # TODO: implement AugMix, AutoAug & RandAug in albumentations LOGGER.info(f'{prefix}auto augmentations are currently not supported') else: if hflip > 0: T += [A.HorizontalFlip(p=hflip)] if vflip > 0: T += [A.VerticalFlip(p=vflip)] if any((hsv_h, hsv_s, hsv_v)): T += [A.ColorJitter(*hsv2colorjitter(hsv_h, hsv_s, hsv_v))] # brightness, contrast, saturation, hue else: # Use fixed crop for eval set (reproducibility) T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) return A.Compose(T) except ImportError: # package not installed, skip pass except Exception as e: LOGGER.info(f'{prefix}{e}') class ClassifyLetterBox: # YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) def __init__(self, size=(640, 640), auto=False, stride=32): """Resizes image and crops it to center with max dimensions 'h' and 'w'.""" super().__init__() self.h, self.w = (size, size) if isinstance(size, int) else size self.auto = auto # pass max size integer, automatically solve for short side using stride self.stride = stride # used with auto def __call__(self, im): # im = np.array HWC imh, imw = im.shape[:2] r = min(self.h / imh, self.w / imw) # ratio of new/old h, w = round(imh * r), round(imw * r) # resized image hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) return im_out class CenterCrop: # YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) def __init__(self, size=640): """Converts an image from numpy array to PyTorch tensor.""" super().__init__() self.h, self.w = (size, size) if isinstance(size, int) else size def __call__(self, im): # im = np.array HWC imh, imw = im.shape[:2] m = min(imh, imw) # min dimension top, left = (imh - m) // 2, (imw - m) // 2 return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) class ToTensor: # YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) def __init__(self, half=False): """Initialize YOLOv8 ToTensor object with optional half-precision support.""" super().__init__() self.half = half def __call__(self, im): # im = np.array HWC in BGR order im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous im = torch.from_numpy(im) # to torch im = im.half() if self.half else im.float() # uint8 to fp16/32 im /= 255.0 # 0-255 to 0.0-1.0 return im