# Ultralytics YOLO 🚀, GPL-3.0 license import hydra import torch import torchvision from ultralytics.nn.tasks import ClassificationModel, attempt_load_one_weight from ultralytics.yolo import v8 from ultralytics.yolo.data import build_classification_dataloader from ultralytics.yolo.engine.trainer import BaseTrainer from ultralytics.yolo.utils import DEFAULT_CONFIG from ultralytics.yolo.utils.torch_utils import strip_optimizer class ClassificationTrainer(BaseTrainer): def __init__(self, config=DEFAULT_CONFIG, overrides=None): if overrides is None: overrides = {} overrides["task"] = "classify" super().__init__(config, overrides) def set_model_attributes(self): self.model.names = self.data["names"] def get_model(self, cfg=None, weights=None, verbose=True): model = ClassificationModel(cfg, nc=self.data["nc"]) if weights: model.load(weights) pretrained = False for m in model.modules(): if not pretrained and hasattr(m, 'reset_parameters'): m.reset_parameters() if isinstance(m, torch.nn.Dropout) and self.args.dropout: m.p = self.args.dropout # set dropout for p in model.parameters(): p.requires_grad = True # for training # Update defaults if self.args.imgsz == 640: self.args.imgsz = 224 return model def setup_model(self): """ load/create/download model for any task """ # classification models require special handling if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed return model = str(self.model) # Load a YOLO model locally, from torchvision, or from Ultralytics assets if model.endswith(".pt"): self.model, _ = attempt_load_one_weight(model, device='cpu') elif model.endswith(".yaml"): self.model = self.get_model(cfg=model) elif model in torchvision.models.__dict__: pretrained = True self.model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None) else: FileNotFoundError(f'ERROR: model={model} not found locally or online. Please check model name.') return # dont return ckpt. Classification doesn't support resume def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"): loader = build_classification_dataloader(path=dataset_path, imgsz=self.args.imgsz, batch_size=batch_size if mode == "train" else (batch_size * 2), augment=mode == "train", rank=rank, workers=self.args.workers) if mode != "train": self.model.transforms = loader.dataset.torch_transforms # attach inference transforms return loader def preprocess_batch(self, batch): batch["img"] = batch["img"].to(self.device) batch["cls"] = batch["cls"].to(self.device) return batch def progress_string(self): return ('\n' + '%11s' * (4 + len(self.loss_names))) % \ ('Epoch', 'GPU_mem', *self.loss_names, 'Instances', 'Size') def get_validator(self): self.loss_names = ['loss'] return v8.classify.ClassificationValidator(self.test_loader, self.save_dir, logger=self.console) def criterion(self, preds, batch): loss = torch.nn.functional.cross_entropy(preds, batch["cls"], reduction='sum') / self.args.nbs loss_items = loss.detach() return loss, loss_items # def label_loss_items(self, loss_items=None, prefix="train"): # """ # Returns a loss dict with labelled training loss items tensor # """ # # Not needed for classification but necessary for segmentation & detection # keys = [f"{prefix}/{x}" for x in self.loss_names] # if loss_items is not None: # loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats # return dict(zip(keys, loss_items)) # else: # return keys def label_loss_items(self, loss_items=None, prefix="train"): """ Returns a loss dict with labelled training loss items tensor """ # Not needed for classification but necessary for segmentation & detection keys = [f"{prefix}/{x}" for x in self.loss_names] if loss_items is None: return keys loss_items = [round(float(loss_items), 5)] return dict(zip(keys, loss_items)) def resume_training(self, ckpt): pass def final_eval(self): for f in self.last, self.best: if f.exists(): strip_optimizer(f) # strip optimizers # TODO: validate best.pt after training completes # if f is self.best: # self.console.info(f'\nValidating {f}...') # self.validator.args.save_json = True # self.metrics = self.validator(model=f) # self.metrics.pop('fitness', None) # self.run_callbacks('on_fit_epoch_end') @hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name) def train(cfg): cfg.model = cfg.model or "yolov8n-cls.yaml" # or "resnet18" cfg.data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist") cfg.lr0 = 0.1 cfg.weight_decay = 5e-5 cfg.label_smoothing = 0.1 cfg.warmup_epochs = 0.0 cfg.device = cfg.device if cfg.device is not None else '' # trainer = ClassificationTrainer(cfg) # trainer.train() from ultralytics import YOLO model = YOLO(cfg.model) model.train(**cfg) if __name__ == "__main__": """ yolo task=classify mode=train model=yolov8n-cls.pt data=mnist160 epochs=10 imgsz=32 yolo task=classify mode=val model=runs/classify/train/weights/last.pt data=mnist160 imgsz=32 yolo task=classify mode=predict model=runs/classify/train/weights/last.pt imgsz=32 source=ultralytics/assets/bus.jpg yolo mode=export model=runs/classify/train/weights/last.pt imgsz=32 format=torchscript """ train()