# Ultralytics YOLO 🚀, AGPL-3.0 license import torch from ultralytics.yolo.engine.predictor import BasePredictor from ultralytics.yolo.engine.results import Results from ultralytics.yolo.utils import DEFAULT_CFG, ROOT class ClassificationPredictor(BasePredictor): def preprocess(self, img): img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 def postprocess(self, preds, img, orig_imgs): results = [] for i, pred in enumerate(preds): orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs path, _, _, _, _ = self.batch img_path = path[i] if isinstance(path, list) else path results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred)) return results def predict(cfg=DEFAULT_CFG, use_python=False): model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ else 'https://ultralytics.com/images/bus.jpg' args = dict(model=model, source=source) if use_python: from ultralytics import YOLO YOLO(model)(**args) else: predictor = ClassificationPredictor(overrides=args) predictor.predict_cli() if __name__ == '__main__': predict()