from functools import lru_cache import numpy as np import torch from ultralytics.yolo.utils import LOGGER, ops class Results: """ A class for storing and manipulating inference results. Args: boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. masks (Masks, optional): A Masks object containing the detection masks. probs (torch.Tensor, optional): A tensor containing the detection class probabilities. orig_shape (tuple, optional): Original image size. Attributes: boxes (Boxes, optional): A Boxes object containing the detection bounding boxes. masks (Masks, optional): A Masks object containing the detection masks. probs (torch.Tensor, optional): A tensor containing the detection class probabilities. orig_shape (tuple, optional): Original image size. """ def __init__(self, boxes=None, masks=None, probs=None, orig_shape=None) -> None: self.boxes = Boxes(boxes, orig_shape) if boxes is not None else None # native size boxes self.masks = Masks(masks, orig_shape) if masks is not None else None # native size or imgsz masks self.probs = probs.softmax(0) if probs is not None else None self.orig_shape = orig_shape self.comp = ["boxes", "masks", "probs"] def pandas(self): pass # TODO masks.pandas + boxes.pandas + cls.pandas def __getitem__(self, idx): r = Results(orig_shape=self.orig_shape) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item)[idx]) return r def cpu(self): r = Results(orig_shape=self.orig_shape) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item).cpu()) return r def numpy(self): r = Results(orig_shape=self.orig_shape) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item).numpy()) return r def cuda(self): r = Results(orig_shape=self.orig_shape) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item).cuda()) return r def to(self, *args, **kwargs): r = Results(orig_shape=self.orig_shape) for item in self.comp: if getattr(self, item) is None: continue setattr(r, item, getattr(self, item).to(*args, **kwargs)) return r def __len__(self): for item in self.comp: if getattr(self, item) is None: continue return len(getattr(self, item)) def __str__(self): return self.__repr__() def __repr__(self): s = f'Ultralytics YOLO {self.__class__} instance\n' # string if self.boxes: s = s + self.boxes.__repr__() + '\n' if self.masks: s = s + self.masks.__repr__() + '\n' if self.probs: s = s + self.probs.__repr__() s += f'original size: {self.orig_shape}\n' return s class Boxes: """ A class for storing and manipulating detection boxes. Args: boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, with shape (num_boxes, 6). The last two columns should contain confidence and class values. orig_shape (tuple): Original image size, in the format (height, width). Attributes: boxes (torch.Tensor) or (numpy.ndarray): A tensor or numpy array containing the detection boxes, with shape (num_boxes, 6). orig_shape (torch.Tensor) or (numpy.ndarray): Original image size, in the format (height, width). Properties: xyxy (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format. conf (torch.Tensor) or (numpy.ndarray): The confidence values of the boxes. cls (torch.Tensor) or (numpy.ndarray): The class values of the boxes. xywh (torch.Tensor) or (numpy.ndarray): The boxes in xywh format. xyxyn (torch.Tensor) or (numpy.ndarray): The boxes in xyxy format normalized by original image size. xywhn (torch.Tensor) or (numpy.ndarray): The boxes in xywh format normalized by original image size. """ def __init__(self, boxes, orig_shape) -> None: if boxes.ndim == 1: boxes = boxes[None, :] assert boxes.shape[-1] == 6 # xyxy, conf, cls self.boxes = boxes self.orig_shape = torch.as_tensor(orig_shape, device=boxes.device) if isinstance(boxes, torch.Tensor) \ else np.asarray(orig_shape) @property def xyxy(self): return self.boxes[:, :4] @property def conf(self): return self.boxes[:, -2] @property def cls(self): return self.boxes[:, -1] @property @lru_cache(maxsize=2) # maxsize 1 should suffice def xywh(self): return ops.xyxy2xywh(self.xyxy) @property @lru_cache(maxsize=2) def xyxyn(self): return self.xyxy / self.orig_shape[[1, 0, 1, 0]] @property @lru_cache(maxsize=2) def xywhn(self): return self.xywh / self.orig_shape[[1, 0, 1, 0]] def cpu(self): boxes = self.boxes.cpu() return Boxes(boxes, self.orig_shape) def numpy(self): boxes = self.boxes.numpy() return Boxes(boxes, self.orig_shape) def cuda(self): boxes = self.boxes.cuda() return Boxes(boxes, self.orig_shape) def to(self, *args, **kwargs): boxes = self.boxes.to(*args, **kwargs) return Boxes(boxes, self.orig_shape) def pandas(self): LOGGER.info('results.pandas() method not yet implemented') ''' new = copy(self) # return copy ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) return new ''' @property def shape(self): return self.boxes.shape def __len__(self): # override len(results) return len(self.boxes) def __str__(self): return self.__repr__() def __repr__(self): return (f"Ultralytics YOLO {self.__class__} masks\n" + f"type: {type(self.boxes)}\n" + f"shape: {self.boxes.shape}\n" + f"dtype: {self.boxes.dtype}") def __getitem__(self, idx): boxes = self.boxes[idx] return Boxes(boxes, self.orig_shape) class Masks: """ A class for storing and manipulating detection masks. Args: masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). orig_shape (tuple): Original image size, in the format (height, width). Attributes: masks (torch.Tensor): A tensor containing the detection masks, with shape (num_masks, height, width). orig_shape (tuple): Original image size, in the format (height, width). Properties: segments (list): A list of segments which includes x,y,w,h,label,confidence, and mask of each detection masks. """ def __init__(self, masks, orig_shape) -> None: self.masks = masks # N, h, w self.orig_shape = orig_shape @property @lru_cache(maxsize=1) def segments(self): return [ ops.scale_segments(self.masks.shape[1:], x, self.orig_shape, normalize=True) for x in reversed(ops.masks2segments(self.masks))] @property def shape(self): return self.masks.shape def cpu(self): masks = self.masks.cpu() return Masks(masks, self.orig_shape) def numpy(self): masks = self.masks.numpy() return Masks(masks, self.orig_shape) def cuda(self): masks = self.masks.cuda() return Masks(masks, self.orig_shape) def to(self, *args, **kwargs): masks = self.masks.to(*args, **kwargs) return Masks(masks, self.orig_shape) def __len__(self): # override len(results) return len(self.masks) def __str__(self): return self.__repr__() def __repr__(self): return (f"Ultralytics YOLO {self.__class__} masks\n" + f"type: {type(self.masks)}\n" + f"shape: {self.masks.shape}\n" + f"dtype: {self.masks.dtype}") def __getitem__(self, idx): masks = self.masks[idx] return Masks(masks, self.im_shape, self.orig_shape) if __name__ == "__main__": # test examples results = Results(boxes=torch.randn((2, 6)), masks=torch.randn((2, 160, 160)), orig_shape=[640, 640]) results = results.cuda() print("--cuda--pass--") results = results.cpu() print("--cpu--pass--") results = results.to("cuda:0") print("--to-cuda--pass--") results = results.to("cpu") print("--to-cpu--pass--") results = results.numpy() print("--numpy--pass--") # box = Boxes(boxes=torch.randn((2, 6)), orig_shape=[5, 5]) # box = box.cuda() # box = box.cpu() # box = box.numpy() # for b in box: # print(b)