# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.utils import LOGGER, TESTS_RUNNING, colorstr try: from torch.utils.tensorboard import SummaryWriter assert not TESTS_RUNNING # do not log pytest # TypeError for handling 'Descriptors cannot not be created directly.' protobuf errors in Windows except (ImportError, AssertionError, TypeError): SummaryWriter = None writer = None # TensorBoard SummaryWriter instance def _log_scalars(scalars, step=0): """Logs scalar values to TensorBoard.""" if writer: for k, v in scalars.items(): writer.add_scalar(k, v, step) def on_pretrain_routine_start(trainer): """Initialize TensorBoard logging with SummaryWriter.""" if SummaryWriter: try: global writer writer = SummaryWriter(str(trainer.save_dir)) prefix = colorstr('TensorBoard: ') LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {trainer.save_dir}', view at http://localhost:6006/") except Exception as e: LOGGER.warning(f'WARNING ⚠️ TensorBoard not initialized correctly, not logging this run. {e}') def on_batch_end(trainer): """Logs scalar statistics at the end of a training batch.""" _log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1) def on_fit_epoch_end(trainer): """Logs epoch metrics at end of training epoch.""" _log_scalars(trainer.metrics, trainer.epoch + 1) callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_fit_epoch_end': on_fit_epoch_end, 'on_batch_end': on_batch_end}