# Ultralytics YOLO 🚀, AGPL-3.0 license import re import matplotlib.image as mpimg import matplotlib.pyplot as plt from ultralytics.utils import LOGGER, TESTS_RUNNING from ultralytics.utils.torch_utils import model_info_for_loggers try: import clearml from clearml import Task from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO from clearml.binding.matplotlib_bind import PatchedMatplotlib assert hasattr(clearml, '__version__') # verify package is not directory assert not TESTS_RUNNING # do not log pytest except (ImportError, AssertionError): clearml = None def _log_debug_samples(files, title='Debug Samples') -> None: """ Log files (images) as debug samples in the ClearML task. Args: files (list): A list of file paths in PosixPath format. title (str): A title that groups together images with the same values. """ task = Task.current_task() if task: for f in files: if f.exists(): it = re.search(r'_batch(\d+)', f.name) iteration = int(it.groups()[0]) if it else 0 task.get_logger().report_image(title=title, series=f.name.replace(it.group(), ''), local_path=str(f), iteration=iteration) def _log_plot(title, plot_path) -> None: """ Log an image as a plot in the plot section of ClearML. Args: title (str): The title of the plot. plot_path (str): The path to the saved image file. """ img = mpimg.imread(plot_path) fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks ax.imshow(img) Task.current_task().get_logger().report_matplotlib_figure(title=title, series='', figure=fig, report_interactive=False) def on_pretrain_routine_start(trainer): """Runs at start of pretraining routine; initializes and connects/ logs task to ClearML.""" try: task = Task.current_task() if task: # Make sure the automatic pytorch and matplotlib bindings are disabled! # We are logging these plots and model files manually in the integration PatchPyTorchModelIO.update_current_task(None) PatchedMatplotlib.update_current_task(None) else: task = Task.init(project_name=trainer.args.project or 'YOLOv8', task_name=trainer.args.name, tags=['YOLOv8'], output_uri=True, reuse_last_task_id=False, auto_connect_frameworks={ 'pytorch': False, 'matplotlib': False}) LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, ' 'please add clearml-init and connect your arguments before initializing YOLO.') task.connect(vars(trainer.args), name='General') except Exception as e: LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}') def on_train_epoch_end(trainer): task = Task.current_task() if task: """Logs debug samples for the first epoch of YOLO training.""" if trainer.epoch == 1: _log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic') """Report the current training progress.""" for k, v in trainer.validator.metrics.results_dict.items(): task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch) def on_fit_epoch_end(trainer): """Reports model information to logger at the end of an epoch.""" task = Task.current_task() if task: # You should have access to the validation bboxes under jdict task.get_logger().report_scalar(title='Epoch Time', series='Epoch Time', value=trainer.epoch_time, iteration=trainer.epoch) if trainer.epoch == 0: for k, v in model_info_for_loggers(trainer).items(): task.get_logger().report_single_value(k, v) def on_val_end(validator): """Logs validation results including labels and predictions.""" if Task.current_task(): # Log val_labels and val_pred _log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation') def on_train_end(trainer): """Logs final model and its name on training completion.""" task = Task.current_task() if task: # Log final results, CM matrix + PR plots files = [ 'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter for f in files: _log_plot(title=f.stem, plot_path=f) # Report final metrics for k, v in trainer.validator.metrics.results_dict.items(): task.get_logger().report_single_value(k, v) # Log the final model task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) callbacks = { 'on_pretrain_routine_start': on_pretrain_routine_start, 'on_train_epoch_end': on_train_epoch_end, 'on_fit_epoch_end': on_fit_epoch_end, 'on_val_end': on_val_end, 'on_train_end': on_train_end} if clearml else {}