[English](README.md) | [简体中文](README.zh-CN.md)
Ultralytics CI YOLOv8 Citation Docker Pulls
Run on Gradient Open In Colab Open In Kaggle

[Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics) is the latest version of the YOLO object detection and image segmentation model developed by [Ultralytics](https://ultralytics.com). YOLOv8 is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. The YOLOv8 models are designed to be fast, accurate, and easy to use, making them an excellent choice for a wide range of object detection, image segmentation and image classification tasks. Whether you are a seasoned machine learning practitioner or new to the field, we hope that the resources on this page will help you get the most out of YOLOv8.
##
Documentation
See below for quickstart intallation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
Install Pip install the ultralytics package including all [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.7.0**](https://www.python.org/) environment, including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). ```bash pip install ultralytics ```
Usage YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command: ```bash yolo task=detect mode=predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg" ``` `yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See a full list of available `yolo` [arguments](https://docs.ultralytics.com/config/) in the YOLOv8 [Docs](https://docs.ultralytics.com). ```bash yolo task=detect mode=train model=yolov8n.pt args... classify predict yolov8n-cls.yaml args... segment val yolov8n-seg.yaml args... export yolov8n.pt format=onnx args... ``` YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/config/) as in the CLI example above: ```python from ultralytics import YOLO model = YOLO("yolov8n.pt") # load a pretrained YOLOv8n model model.train(data="coco128.yaml") # train the model model.val() # evaluate model performance on the validation set model.predict(source="https://ultralytics.com/images/bus.jpg") # predict on an image model.export(format="onnx") # export the model to ONNX format ``` [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/yolo/v8/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/ultralytics/releases). ### Known Issues / TODOs - [ ] TensorFlow exports - [ ] GPU exports - [ ] DDP resume - [ ] [arxiv.org](https://arxiv.org) paper
##
Checkpoints
All YOLOv8 pretrained models are available here. Detection and Segmentation models are pretrained on the COCO dataset, while Classification models are pretrained on the ImageNet dataset. [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/yolo/v8/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/ultralytics/releases) on first use.
Detection | Model | size
(pixels) | mAPval
50-95 | Speed
CPU
(ms) | Speed
T4 GPU
(ms) | params
(M) | FLOPs
(B) | | ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- | | [YOLOv8n](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8n.pt) | 640 | 37.3 | - | - | 3.2 | 8.7 | | [YOLOv8s](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8s.pt) | 640 | 44.9 | - | - | 11.2 | 28.6 | | [YOLOv8m](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8m.pt) | 640 | 50.2 | - | - | 25.9 | 78.9 | | [YOLOv8l](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8l.pt) | 640 | 52.9 | - | - | 43.7 | 165.2 | | [YOLOv8x](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8x.pt) | 640 | 53.9 | - | - | 68.2 | 257.8 | - **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
Reproduce by `yolo mode=val task=detect data=coco.yaml device=0` - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo mode=val task=detect data=coco128.yaml batch=1 device=0/cpu`
Segmentation | Model | size
(pixels) | mAPbox
50-95 | mAPmask
50-95 | Speed
CPU
(ms) | Speed
T4 GPU
(ms) | params
(M) | FLOPs
(B) | | --------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------- | ---------------------------- | ------------------ | ----------------- | | [YOLOv8n](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | - | - | 3.4 | 12.6 | | [YOLOv8s](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | - | - | 11.8 | 42.6 | | [YOLOv8m](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | - | - | 27.3 | 110.2 | | [YOLOv8l](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | - | - | 46.0 | 220.5 | | [YOLOv8x](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | - | - | 71.8 | 344.1 | - **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
Reproduce by `yolo mode=val task=detect data=coco.yaml device=0` - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo mode=val task=detect data=coco128.yaml batch=1 device=0/cpu`
Classification | Model | size
(pixels) | acc
top1 | acc
top5 | Speed
CPU
(ms) | Speed
T4 GPU
(ms) | params
(M) | FLOPs
(B) at 640 | | --------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------- | ---------------------------- | ------------------ | ------------------------ | | [YOLOv8n](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | - | - | 2.7 | 4.3 | | [YOLOv8s](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | - | - | 6.4 | 13.5 | | [YOLOv8m](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | - | - | 17.0 | 42.7 | | [YOLOv8l](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | - | - | 37.5 | 99.7 | | [YOLOv8x](https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | - | - | 57.4 | 154.8 | - **mAPval** values are for single-model single-scale on [ImageNet](https://www.image-net.org/) dataset.
Reproduce by `yolo mode=val task=detect data=coco.yaml device=0` - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
Reproduce by `yolo mode=val task=detect data=coco128.yaml batch=1 device=0/cpu`
##
Integrations



| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW | | :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: | | Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet2) lets you save YOLOv8 models, resume training, and interactively visualise and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) | ##
Ultralytics HUB
[Ultralytics HUB](https://bit.ly/ultralytics_hub) is our ⭐ **NEW** no-code solution to visualize datasets, train YOLOv8 🚀 models, and deploy to the real world in a seamless experience. Get started for **Free** now! Also run YOLOv8 models on your iOS or Android device by downloading the [Ultralytics App](https://ultralytics.com/app_install)! ##
Contribute
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out our [Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors! ##
License
YOLOv8 is available under two different licenses: - **GPL-3.0 License**: See [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for details. - **Enterprise License**: Provides greater flexibility for commercial product development without the open-source requirements of GPL-3.0. Typical use cases are embedding Ultralytics software and AI models in commercial products and applications. Request an Enterprise License at [Ultralytics Licensing](https://ultralytics.com/license). ##
Contact
For YOLOv8 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). For professional support please [Contact Us](https://ultralytics.com/contact).